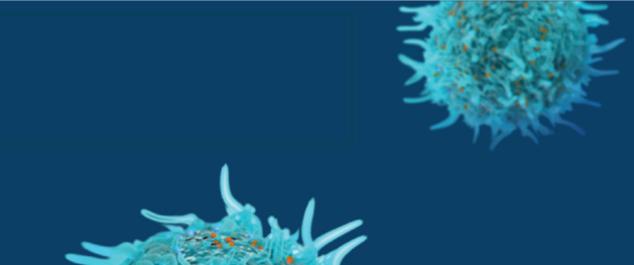


HARNESSING THE POWER OF MACROPHAGES

January 2024




# **Cautionary Note Regarding Forward-Looking Statements**

Statements in this slide deck about future expectations, plans and prospects, as well as any other statements regarding matters that are not historical facts, may constitute "forward-looking statements" within the meaning of The Private Securities Litigation Reform Act of 1995. These statements include, but are not limited to, statements relating to Carisma's business, strategy, future operations, cash runway, the advancement of Carisma's product candidates and product pipeline, and clinical development of Carisma's product candidates, including expectations regarding timing of initiation and results of clinical trials. The words "anticipate," "believe," "contemplate," "continue," "could," "estimate," "expect," "goals," "intend," "may," "might," "outlook," "plan," "project," "potential," "predict," "target," "possible," "will," "would," "could," "should," and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words.

Any forward-looking statements are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in, or implied by, such forward-looking statements. These risks and uncertainties include, but are not limited to, (i) Carisma's ability to obtain, maintain and protect its intellectual property rights related to its product candidates; (ii) Carisma's ability to advance the development of its product candidates under the timelines it anticipates in planned and future clinical trials; (iii) Carisma's ability to replicate in later clinical trials positive results found in preclinical studies and early-stage clinical trials of its product candidates; (iv) Carisma's ability to realize the anticipated benefits of its research and development programs, strategic partnerships, research and licensing programs and academic and other collaborations; (v) regulatory requirements or developments and Carisma's ability to obtain and maintain necessary approvals from the U.S. Food and Drug Administration and other regulatory authorities; (vi) changes to clinical trial designs and regulatory pathways; (vii) risks associated with Carisma's ability to manage expenses; (viii) changes in capital resource requirements; (ix) risks related to the inability of Carisma to obtain sufficient additional capital to continue to advance its product candidates and its preclinical programs; and (x) legislative, regulatory, political and economic developments. For a discussion of other risks and uncertainties, and other important factors, any of which could cause the Carisma's actual results to differ from those contained in the forward-looking statements, see the "Risk Factors" set forth in Exhibit 99.1 to Carisma's Current Report on Form 8-K filed with the Securities and Exchange Commission on November 9, 2023, Carisma's Quarterly Report on Form 10-Q for the guarter ended June 30, 2023 filed with the Securities and Exchange Commission on November 9, 2023, as well as discussions of potential risks, uncertainties, and other important factors in Carisma's most recent filings with the Securities and Exchange Commission. Any forward-looking statements that are made in this presentation speak as of the date of this presentation. Carisma undertakes no obligation to revise the forward-looking statements or to update them to reflect events or circumstances occurring after the date of this presentation, whether as a result of new information, future developments or otherwise, except as required by the federal securities laws.

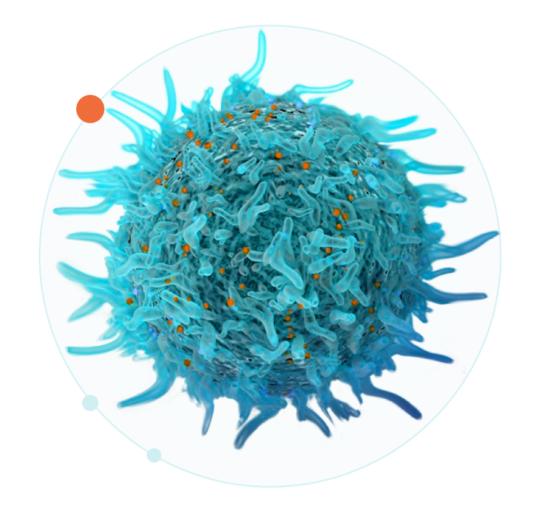




Pioneering engineered macrophages in oncology and beyond



# Harnessing the Power of Macrophages


Developing unique and transformative cell therapies for patients with devastating diseases





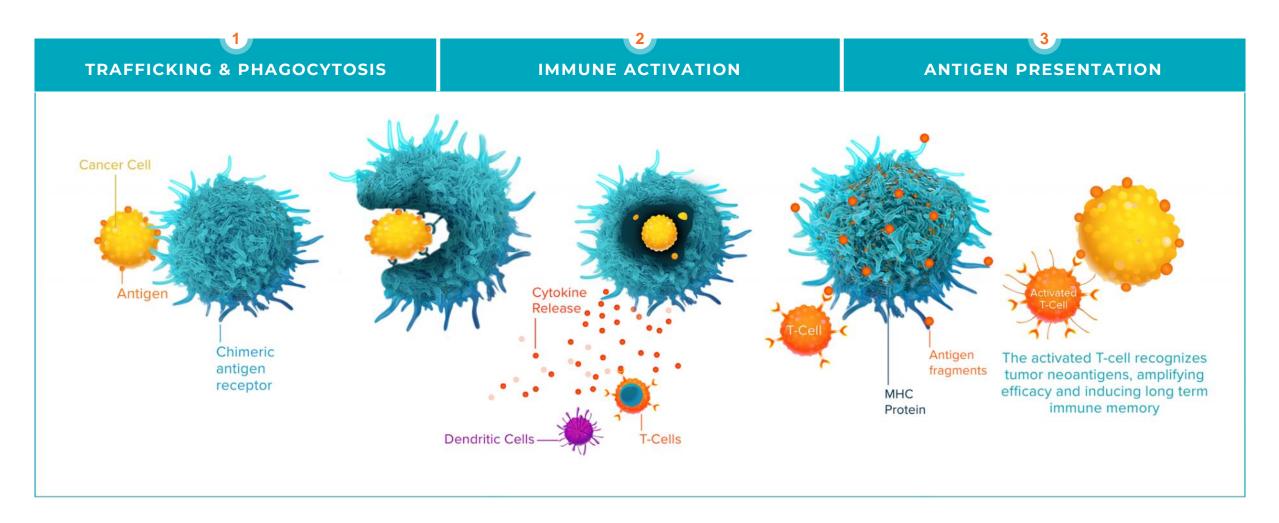
**STRONG FUNDAMENTALS** 







## **CAR-M:** Differentiated from CAR-T and CAR-NK


CAR-M has the potential for key solid tumor advantages over both

|                           | CAR-T           | CAR-NK               | CAR-M                                 |
|---------------------------|-----------------|----------------------|---------------------------------------|
| Mechanism of Action       |                 |                      |                                       |
| Effector Cell             | CD4/CD8 T cells | Natural Killer Cells | Macrophages or Monocytes              |
| Persistence               | High            | Low                  | Intermediate                          |
| Trafficking Potential     | Low             | Low                  | High                                  |
| TME Activation            | Low             | Low                  | High                                  |
| Antigen Presentation      | None            | None                 | High                                  |
| Epitope Spreading         | Low             | Low                  | High                                  |
| Safety                    |                 |                      |                                       |
| Chemotherapy Conditioning | Yes             | Yes                  | No                                    |
| CRS / ICANS               | High / High     | Low / Low            | Low / Low                             |
| Manufacturing             |                 |                      |                                       |
| Manufacturing Time        | Days to weeks   | Days to weeks        | Macrophage: 1 week<br>Monocyte: 1 day |



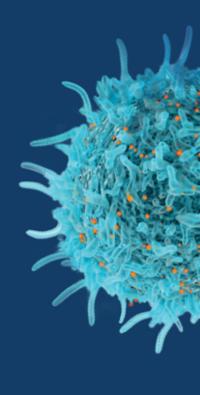
# **CAR-M Mechanism of Action in Oncology**

Potential to address the challenges of treating solid tumors with cell therapies





# First-in-Class Pipeline


Multiple value inflection points across therapeutic areas and modalities

| THERAPEUTIC<br>AREA         | PRODUCT                    | PLATFORM                                     | DISCOVERY | PRE-CLINICAL            | PHASE 1             | PHASE 2 | PHASE 3 | PARTNER |
|-----------------------------|----------------------------|----------------------------------------------|-----------|-------------------------|---------------------|---------|---------|---------|
| Ex Vivo Onco                | ology                      |                                              |           |                         |                     |         |         |         |
|                             | CT-0508                    | CAR-Macrophage<br>(1st Gen CAR)              |           |                         |                     |         |         |         |
| HER2+<br>solid tumors       | CT-0508 +<br>pembrolizumab | CAR-Macrophage<br>(1st Gen CAR)              |           | 1H 2024: Combo          | o data <sup>1</sup> |         |         |         |
|                             | CT-0525                    | CAR-Monocyte<br>(1st Gen CAR)                | 1H 2024   | 4: First patient treate | ed <sup>1</sup>     |         |         |         |
| Mesothelin+<br>solid tumors | CT-1119                    | CAR-Monocyte<br>(Next-Gen CAR <sup>2</sup> ) | 2025: IND | 1                       |                     |         |         |         |
| In Vivo Onco                | logy                       |                                              |           |                         |                     |         |         |         |
| Oncology                    | 5 Targets <sup>3</sup>     | CAR-Macrophage + mRNA/LNP                    |           |                         |                     |         |         | moderna |
| Fibrosis and                | Immunology                 |                                              |           |                         |                     |         |         |         |
| Liver Fibrosis              | TBD                        | Engineered macrophage                        |           |                         |                     |         |         |         |



Anticipated milestones
 Includes SIRPα knockdown technology
 Moderna collaboration has identified 5 oncology targets, with the option to identify an additional 7 oncology targets; First lead candidate was nominated in 4Q 2023

# Targeting HER2: CT-0508 and CT-0525





# Lead Program: HER2 Targeted CAR-M

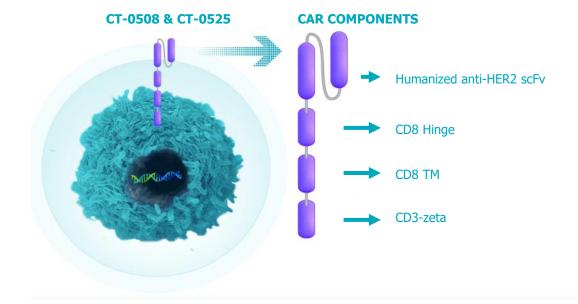
First CAR-M to be tested in human clinical trials

#### **Highlights**



Significant unmet need for HER2+ solid tumors



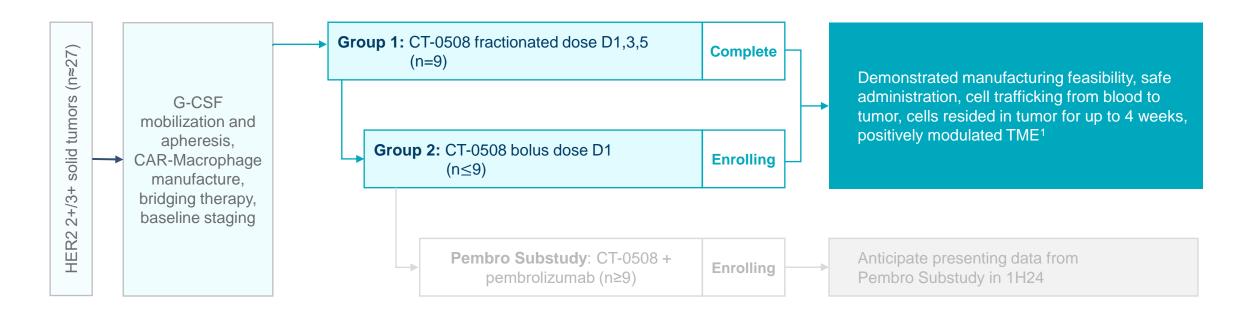

Development path initially focused in late-stage patients

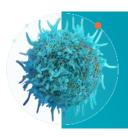


Two related product candidates in development



Initial safety, tolerability and clinical evidence of mechanism achieved in Phase 1 clinical trial





|           | Product Description                     |                            |  |  |
|-----------|-----------------------------------------|----------------------------|--|--|
|           | CT-0508                                 | CT-0525                    |  |  |
| Cells     | Autologous monocyte derived macrophages | Autologous monocytes       |  |  |
| Vector    | Ad5f35                                  | Ad5f35                     |  |  |
| Phenotype | M1                                      | M1                         |  |  |
| CAR       | 1st Generation                          | 1 <sup>st</sup> Generation |  |  |



# CT-0508 Study 101: First in Human Phase 1 Clinical Design

Assessing safety, tolerability, feasibility and TME impact of CT-0508 monotherapy





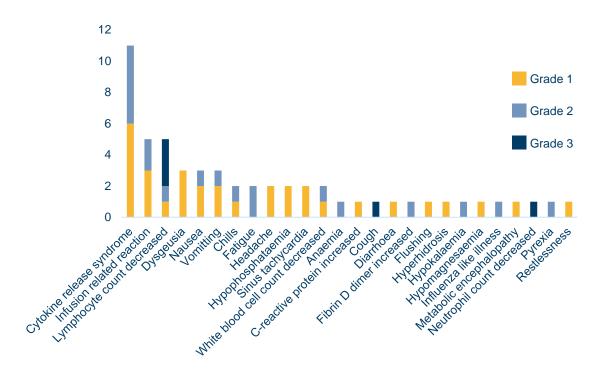
#### PRIMARY OUTCOMES<sup>2</sup>

- Safety and tolerability
- Manufacturing feasibility

#### SECONDARY OUTCOMES & ADDITIONAL ANALYSES<sup>2</sup>

- ORR (RECIST 1.1)
- Trafficking
- TME activation

- T cell recruitment/activation
- T cell expansion/clonality




PFS

# CT-0508 is Well Tolerated with No Dose Limiting Toxicities

Preliminary data supports a safe and tolerable product profile

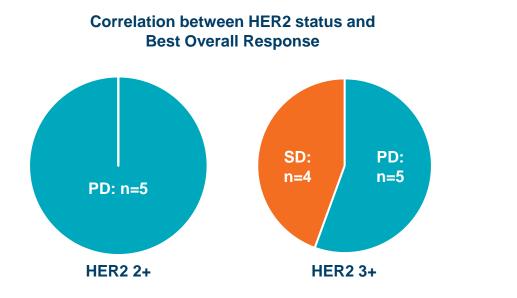
#### **Number of Adverse Events**



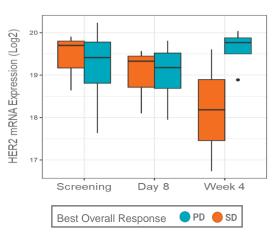
#### **Adverse Event Data by Patient**

|                                        | G1: Fractionated | G2: Bolus     | Combined      |
|----------------------------------------|------------------|---------------|---------------|
| Patients Treated                       | N=9 (%)          | N=5 (%)       | N=14 (%)      |
| Cytokine release syndrome<br>(CRS)     | <b>h</b> (h/)    | <b>3</b> (60) | <b>9</b> (64) |
| Grade 1-2                              | <b>6</b> (67)    | <b>3</b> (60) | <b>9</b> (64) |
| Grade 3-4                              | <b>0</b> (0)     | <b>0</b> (0)  | <b>0</b> (0)  |
| Infusion Reaction                      | <b>2</b> (22)    | 1 (20)        | <b>3</b> (21) |
| Grade 1-2                              | <b>2</b> (22)    | <b>1</b> (20) | <b>3</b> (21) |
| Grade 3-4                              | <b>0</b> (0)     | <b>0</b> (0)  | <b>0</b> (0)  |
| ICANS                                  | <b>0</b> (0)     | <b>0</b> (0)  | <b>0</b> (0)  |
| SAEs Related To Treatment <sup>1</sup> | <b>2</b> (22)    | <b>3</b> (60) | <b>5</b> (36) |

Similar safety profile between Group 1 and Group 2


No severe CRS or ICANS

Majority of adverse events were Grade 1-2



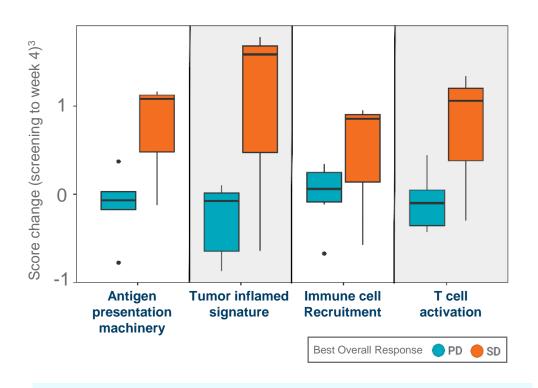

# Clinically Active with Antigen Dependent MOA

Single agent CAR-M demonstrated target lesion shrinkage



# Trend Toward Decrease in HER2+ Tumor Cells in Patients with Stable Disease (SD)




#### **KEY TAKEAWAYS**

- Best Overall Response of Stable Disease in 4 of the 14 evaluated participants (28.6%)\*+
- Largest reduction in target lesion include 20% reduction in breast cancer patient and 14% reduction in salivary gland cancer patient
- Stable Disease was enriched in HER2 3+ subpopulation (n=4/9, 44.4% SD)
- Stable Disease correlated with CT-0508 induced TME remodeling and T cell activation



# Stable Disease Accompanied by TME Remodeling

Observed across multiple TME biomarkers, including antigen presentation, inflammation and T-cell activation



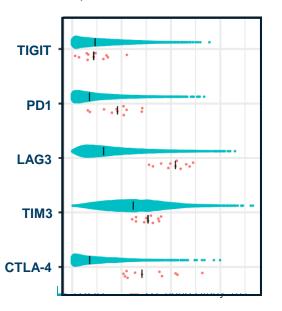
TME activation, based on multiple gene sets, was enriched in patients that had Stable Disease

#### **Expanding T Cell Clones**



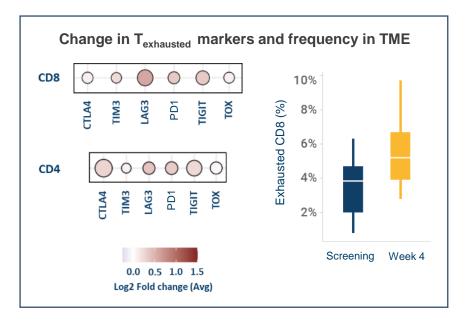
#### **Emergent T Cell Clones**




Accumulation of peripherally expanded and emergent T cell clones was increased in patients that had Stable Disease

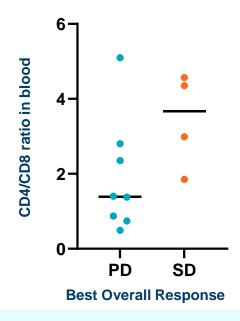


# T cell Exhaustion is a Limiting Factor to CAR-Macrophage Efficacy


Study 101 patients show high baseline T cell exhaustion, and inhibitory pathways are further upregulated

T cell exhaustion markers in CT-0508 Study 101 pts compared to ~10,000 cancer patients in the TCGA database




High T cell exhaustion in the TME of Study 101 pts

Changes in exhaustion markers (left) and exhausted CD8 T cell frequency (right) in the TME (Week 4 vs. Screening)



The pro-inflammatory effects of CT-0508 further upregulate inhibitory pathways

Correlation of outcomes with baseline peripheral blood T cell fitness



T cell fitness<sup>1</sup> correlates with clinical outcome



# Identifying Improved CAR-M Therapy Regimen for HER2 Program

Enhancing CAR-M's therapeutic benefit by focusing on product profile variables

### Demonstrate Safety, Tolerability, Feasibility & MOA: CAR-Macrophage (CT-0508)

Phase 1 Ongoing

Increase Dose: CAR-Monocyte (CT-0525)

Phase 1 Ready



Phase 1 Ongoing

Pembrolizumab

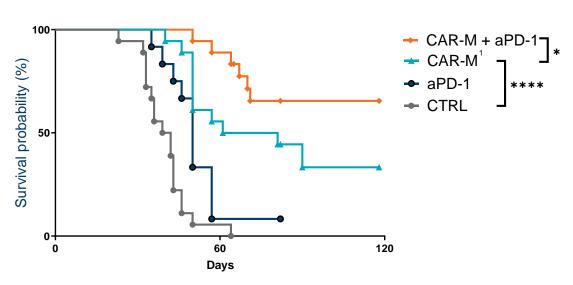
#### **Potential Registrational Profile**

Cell Type

Dose

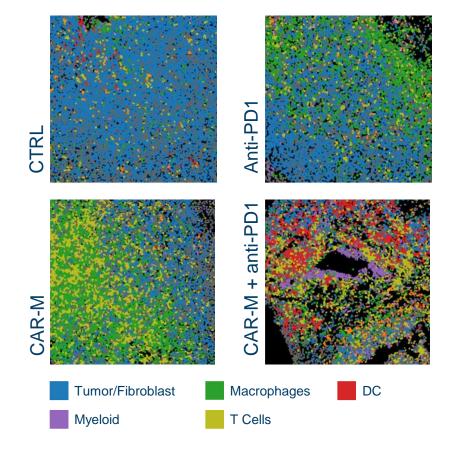
Monotherapy vs. Combo
Therapy

Line of Therapy


Tumor Type



# CT-0508 + Anti-PD1: Robust Synergy

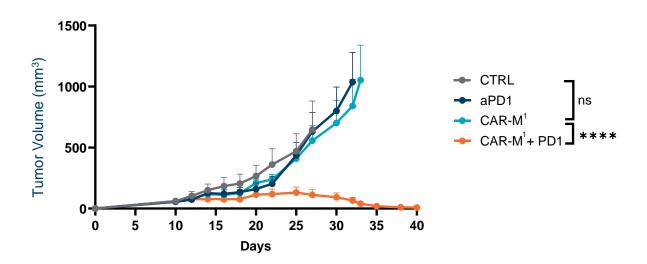

Synergy in a solid tumor model that is resistant to anti-PD1 monotherapy

#### **Synergistic anti-tumor activity**



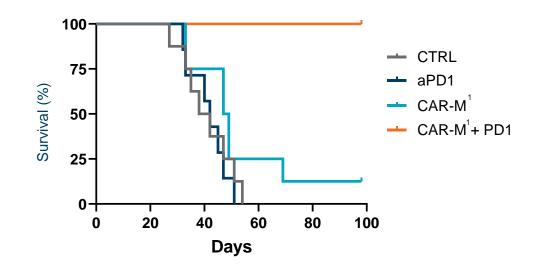
Syngeneic CT26-HER2 solid tumor model. Resistant to anti-PD1 monotherapy.

#### **Synergistic TME modulation with combination**



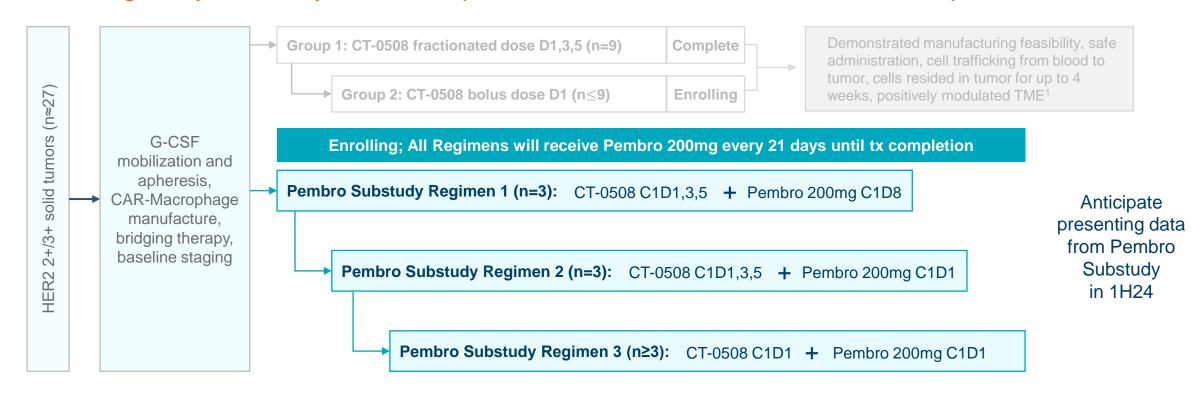


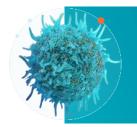

# CT-0508 + Anti-PD1: Robust Synergy


Synergy in a solid tumor model that is resistant to both CAR-Macrophage and anti-PD1 monotherapy

# I.V. CAR-M + anti-PD1 leads to synergistic tumor control




Syngeneic CT26-HER2 solid tumor model. Resistant to anti-PD1 monotherapy.


# I.V. CAR-M + anti-PD1 leads to 100% survival



# CT-0508 Study 101: CT-0508 + Pembrolizumab Substudy

Assessing safety, tolerability and TME impact of CT-0508 in combination with anti-PD1 pembrolizumab





#### PRIMARY OUTCOMES<sup>2</sup>

Safety and tolerability

#### SECONDARY OUTCOMES & ADDITIONAL ANALYSES<sup>2</sup>

- ORR (RECIST 1.1)
- Trafficking
- TME activation

- T cell recruitment/activation
- T cell expansion/clonality



• PFS

# Identifying Improved CAR-M Therapy Regimen for HER2 Program

Enhancing CAR-M's therapeutic benefit by focusing on product profile variables

# Demonstrate Safety, Tolerability, Feasibility & MOA:

CAR-Macrophage (CT-0508)

Phase 1 Ongoing

Increase Dose: CAR-Monocyte (CT-0525)

Phase 1 Ready

#### **Overcome T Cell Exhaustion:**

CAR-Macrophage (CT-0508) + Pembrolizumab

Phase 1 Ongoing





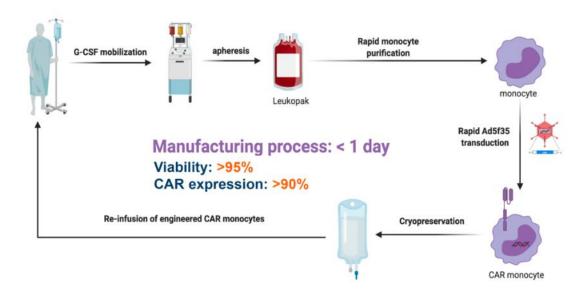
# CT-0525: HER2 Targeted CAR-Monocyte (Macrophage Precursor)

Ability to increase dose up to 5x, enhance trafficking and persistence, and manufacture more rapidly

#### **Highlights**



Manufacturing Advantages Over CAR-Macrophage



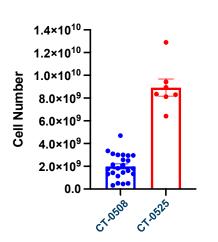

Potential Biological Advantages Over CAR-Macrophage



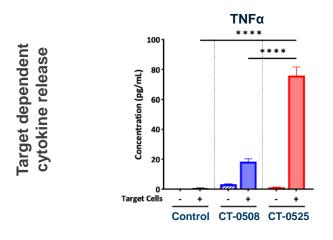
IND Cleared First patient expected to be treated in 1H 2024

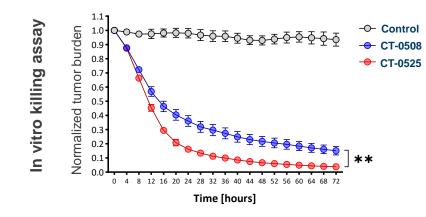
#### **CAR-Monocyte Rapid Manufacturing Process**





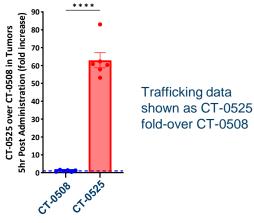

# CT-0525: Multiple Improvements Over CT-0508


Pre-clinical models demonstrate increased dose, potency, trafficking, and persistence with CT-0525

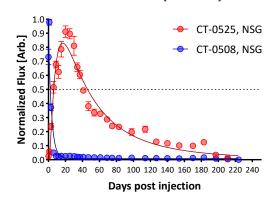

#### ~5x increase in cell number

CT-0508 vs. CT-0525




#### Increased cytokine release & killing<sup>1</sup>



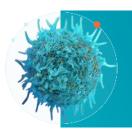



#### Increased trafficking and persistence





#### Persistence (in vivo)






# CT-0525 Study 102: Phase 1 Clinical Trial Design

Assessing safety, tolerability, and manufacturing feasibility of CT-0525; additional analyses on TME impact





#### PRIMARY OUTCOMES

- Safety and tolerability
- Manufacturing feasibility

#### SECONDARY OUTCOMES<sup>1</sup>

 In vivo cellular kinetics profile (levels, persistence, trafficking)

- ORR (RECIST 1.1)
- DOR



# Identifying Improved CAR-M Therapy Regimen for HER2 Program

Enhancing CAR-M's therapeutic benefit by focusing on product profile variables

Demonstrate Safety, Tolerability, Feasibility & MOA: CAR-Macrophage (CT-0508)

Phase 1 Ongoing

Increase Dose: CAR-Monocyte (CT-0525)

Phase 1 Ready

**Overcome T Cell Exhaustion:** 

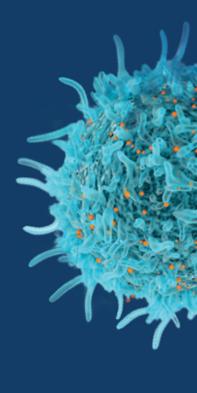
CAR-Macrophage (CT-0508) + Pembrolizumab

Phase 1 Ongoing



Cell Type

Dose


Monotherapy vs. Combo Therapy

Line of Therapy

Tumor Type



# Targeting Mesothelin: CT-1119





# CT-1119: Anti-Mesothelin Autologous CAR-Monocyte

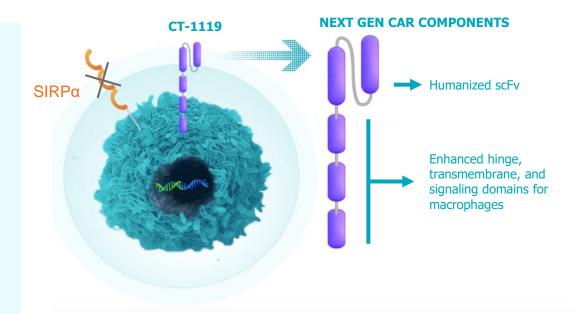
#### **Highlights**



#### **Significant Unmet Need**

- Mesothelin is overexpressed in many solid tumors<sup>1</sup>
- No approved anti-mesothelin therapy




#### **Program Summary**

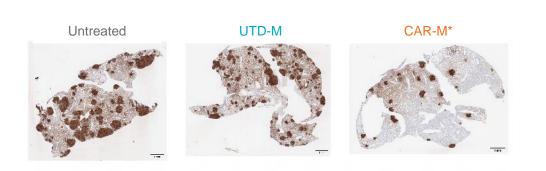
- Incorporating next-gen CAR and SIRPα knockdown
- Utilizing engineered monocyte manufacturing
- Preclinical stage: In vitro and in vivo PoC established

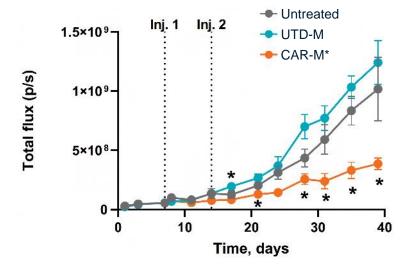


#### **Development Plan & Timeline**

- Multiple solid tumors
- Opportunity to evaluate systemic and regional treatment
- IND planned for 2025




| Product Description        |                 |  |  |
|----------------------------|-----------------|--|--|
| Cells Autologous monocytes |                 |  |  |
| Vector Ad5f35              |                 |  |  |
| Phenotype M1               |                 |  |  |
| CAR Next Generation        |                 |  |  |
| Other Enhancements         | SIRPa knockdown |  |  |




# Development of CT-1119: Anti-Mesothelin CAR-Monocyte

In vivo, CT-1119 significantly reduced tumor burden in a murine xenograft model of lung cancer

#### **Mesothelin(+) NSCLC Xenograft Model:**

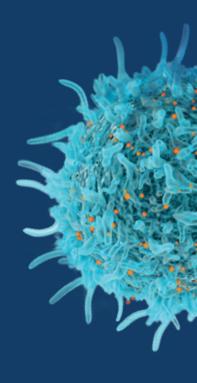




#### **Key Takeaways**



CAR-M\* significantly reduced tumor burden in a mesothelin overexpressing metastatic lung cancer xenograft model




Lead candidate will incorporate multiple additional platform enhancements:

- Next-gen CAR
- SIRPα knockdown



# In Vivo Oncology





## In Vivo CAR-M

#### Collaboration with Moderna to discover, develop and commercialize in vivo CAR-M in oncology

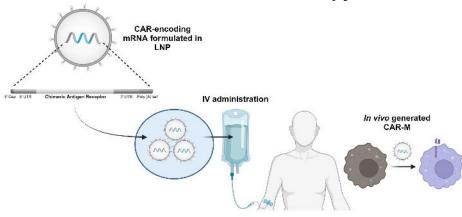
#### **Highlights**



#### **Collaboration Overview**

 Combines Carisma's engineered macrophage technology with Moderna's mRNA and LNP technologies



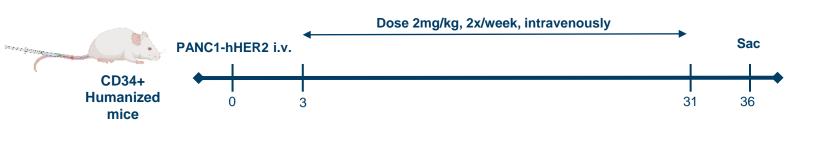

#### Key Advantages of in vivo CAR-M

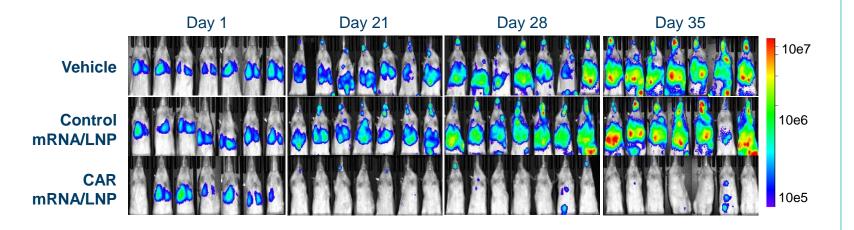
- Off-the-shelf product with ability to re-dose
- Maintains functionality of ex vivo CAR-M

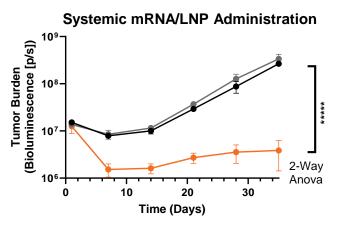


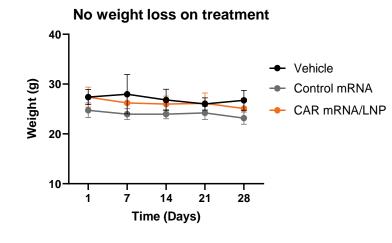
#### **Pre-clinical POC Achieved**

# Redirecting endogenous myeloid cells with mRNA for cancer immunotherapy





| Callolla                                 | erms moderna            |  |
|------------------------------------------|-------------------------|--|
| Number of Targets                        | Up to 12 (5 Identified) |  |
| Upfront Payment                          | \$80M                   |  |
| Total Potential Milestones and Royalties | \$3B+                   |  |
| R&D Funding                              | Fully funded by Moderna |  |





## In Vivo CAR-M Controls Metastatic Pancreatic Cancer

Systemic LNP administration in humanized mouse model of pancreatic cancer











# Developing macrophage cell therapies outside of oncology: Liver Fibrosis



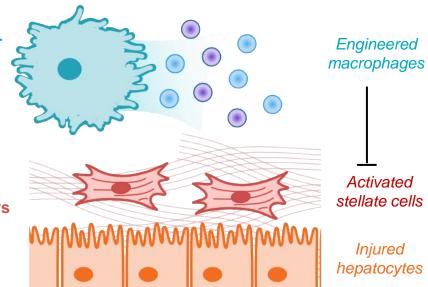
# **Engineered Macrophage Cell Therapy for Liver Fibrosis**

#### **Highlights**



#### **Key Takeaways**

- Allogeneic macrophage compatible MOA
- Genetically engineered macrophages overcome limitations by directly impacting sites of action
- Safety<sup>1</sup> and activity<sup>2</sup> demonstrated with nonengineered macrophages



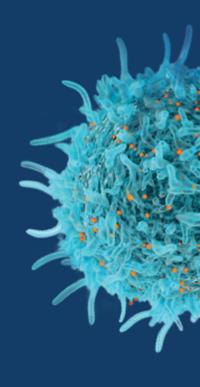

#### **Development Plan & Timeline**

Preclinical POC data expected in 1H 2024

# Engineered macrophages provide a durable reservoir of therapeutic signals

Anti-inflammatory cytokines Anti-fibrotic factors Regenerative factors




## Directly counteract drivers of liver disease

Chronic inflammation Matrix deposition Hepatocyte injury



<sup>1.</sup> Moroni F, et al. Nature Medicine. 2019.

# Corporate & Financial





# **Financial Snapshot**

As of September 30, 2023



40.3M

Shares outstanding



\$94.1M

Cash, cash equivalents and marketable securities



Into 1Q 2025

Expected cash runway



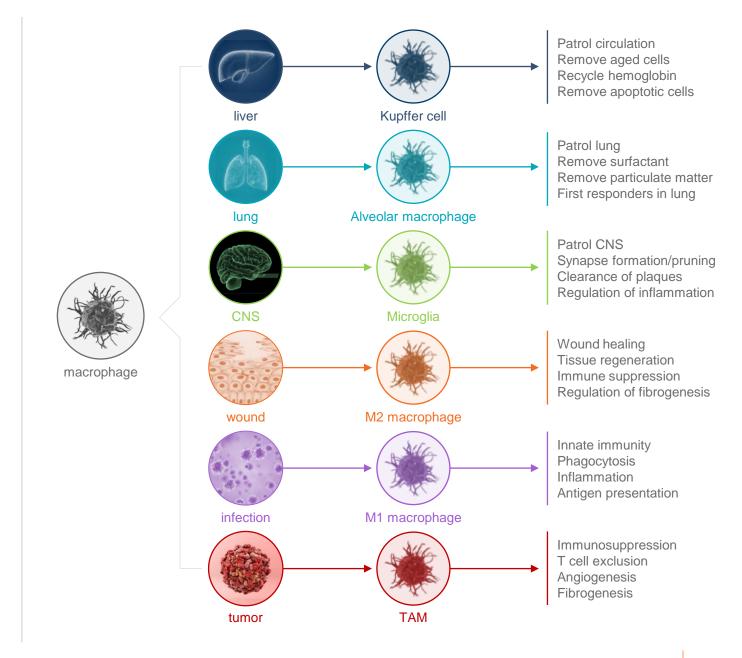
# **Operating Plan and Corporate Milestones**

Capital efficient R&D program designed to reach significant value inflection points

| THERAPEUTIC AREA      | PRODUCT                    | PLATFORM                                    | RECENT AND ANTICIPATED MILESTONES                               |          |  |
|-----------------------|----------------------------|---------------------------------------------|-----------------------------------------------------------------|----------|--|
| Ex Vivo Oncology      |                            |                                             |                                                                 |          |  |
|                       | CT-0508                    | CAR-Macrophage<br>(1 <sup>st</sup> Gen CAR) | 2H23 Report initial Phase 1 Group 2 data                        | <b>√</b> |  |
|                       | CT-0508 +<br>pembrolizumab | CAR-Macrophage<br>(1st Gen CAR)             | 1H23 Commence Phase 1 combination substudy                      | <b>✓</b> |  |
| HER2+<br>solid tumors |                            |                                             | 1H24 Present data from Phase 1 combination substudy             |          |  |
|                       | CT-0525                    | CAR-Monocyte<br>(1st Gen CAR)               | 2H23 IND cleared                                                | <b>√</b> |  |
|                       |                            |                                             | 1H24 Treat first patient                                        |          |  |
| Mesothelin+           | CT-1119                    | CAR-Monocyte<br>(Next-Gen CAR1)             | 2H23 Select clinical candidate                                  | <b>√</b> |  |
| solid tumors          |                            |                                             | 2025 IND application                                            |          |  |
| In Vivo Oncology      |                            |                                             |                                                                 |          |  |
|                       | 5 Targets <sup>2</sup>     | CAR-Macrophage +<br>mRNA/LNP                | 2H23 Nominate fifth target                                      | <b>√</b> |  |
| Oncology              |                            |                                             | 2H23 Report proof of concept data for in vivo CAR-M (SITC 2023) | <b>√</b> |  |
|                       |                            |                                             | 2H23 Nominate first in vivo CAR-M lead candidate                | <b>√</b> |  |
| Fibrosis and Immun    | ology                      |                                             |                                                                 |          |  |
| Liver Fibrosis        | TBD                        | Engineered macrophage                       | 1H24 Report pre-clinical POC data                               |          |  |



 $<sup>1. \</sup> Includes \ SIRP\alpha \ knockdown \ technology$   $2. \ Moderna \ collaboration \ has \ identified \ 5 \ oncology \ targets, \ with \ the \ option \ to \ identify \ an \ additional \ 7 \ oncology \ targets$ 



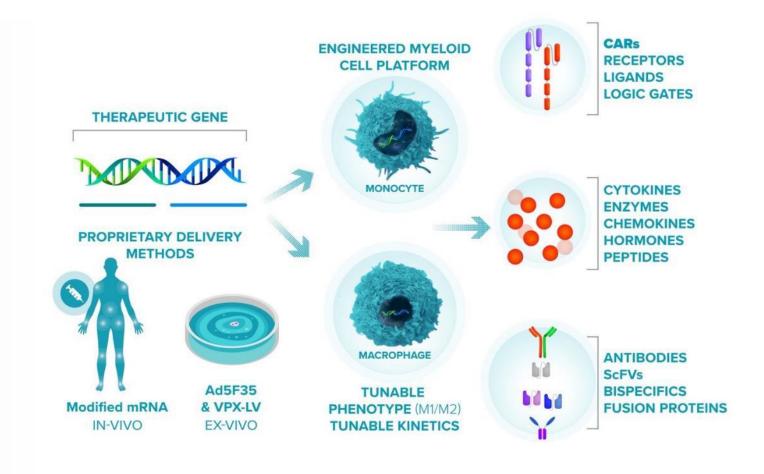



# Macrophages: The Ultimate Multitasker

#### Macrophages can:

- Traffic to tumors/inflammation
- Phagocytose
- Initiate immune response
- Present antigen to T-cells
- Resolve fibrosis
- Induce tissue regeneration
- Resolve immune response






# CARISMA's Broad Myeloid Cell Engineering Platform

Proprietary technology, world-leading macrophage engineering know-how, and strong IP position ensure leadership position

# **Monocyte & Macrophage Engineering Capabilities:**

- Proprietary platforms for robust/durable monocyte & macrophage engineering
- Established rapid GMP manufacturing processes for monocytes and macrophages
- In vivo myeloid cell reprogramming using LNP/mRNA technology
- Novel next-gen CAR constructs
- Cytokine targeting with switch receptor platform
- Applications beyond oncology

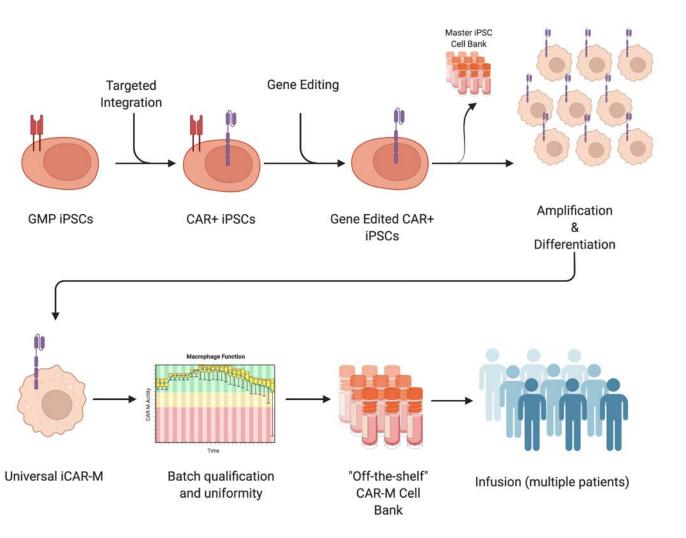




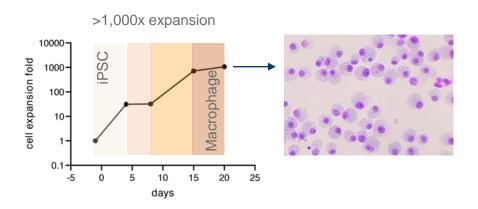
# **Strong Patent Position**

Broad Coverage for Monocyte and Macrophage Targeted Therapies

21
PATENTS GRANTED
WORLDWIDE\*

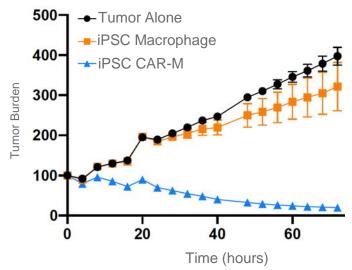

85+
PATENT APPLICATIONS
PENDING WORLDWIDE\*

- Worldwide patent coverage with issued and pending applications in major markets
- Multiple issued US patents covering CAR-M composition of matter
- Broad patent portfolio covering:
  - Viral and non-viral methods for engineering monocytes and macrophages
  - Methods for treatment of protein aggregate disorders
  - Methods for in vivo targeting of monocytes and macrophages




# Off-the-Shelf iPSC Derived Myeloid Cells

Expandable, allogeneic, and potentially broadly applicable




#### **Production of iCAR-M**



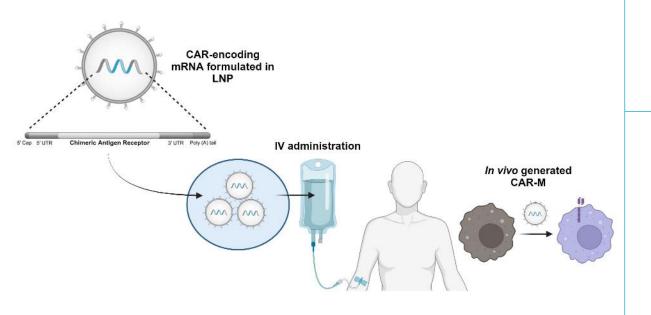
#### iCAR-M anti-tumor function in-vitro

40



GMP: Good Manufacturing Practice

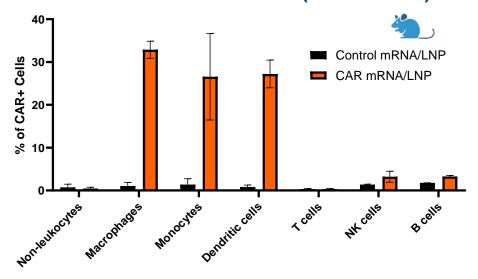
# CT-0508 Study 101: Phase 1 Study Patient Demographics


Heavily pre-treated patients with Stage IV HER2 2+/3+ solid tumors

| Characteristics                                                                                                                                                         | N=14                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Tumor Type, n (%)  Breast Cancer Esophageal Cancer Salivary Carcinoma Cholangiocarcinoma Ovarian Cancer                                                                 | 8 (57.1)<br>2 (14.3)<br>2 (14.3)<br>1 (7.1)<br>1 (7.1) |
| HER2 Overexpression, n (%) IHC 3+ IHC 2+/FISH+                                                                                                                          | 9 (64.3)<br>5 (35.7)                                   |
| Pre-Treatment History  Median Number of Prior Cancer Therapies, n (range)  Median Number of Prior Anti-HER2 Therapies, n (range)  Subjects with Prior Anti-HER2 Therapy | 5 (2, 12)<br>2 (0, 9)<br>13 (92.9)                     |
| Tumor Mutational Burden (TMB)  Low (<10 mut/Mb)  High (≥10 mut/Mb)  Unknown                                                                                             | 11 (78.6)<br>2 (14.3)†<br>1 (7.1)                      |
| Microsatellite Instability (MSI)  MSS/MSI-Low  MSI-High Unknown                                                                                                         | 13 (92.9)<br>0 (0)<br>1 (7.1)                          |



# Directly Reprogramming Myeloid Cells In Vivo with mRNA/LNP

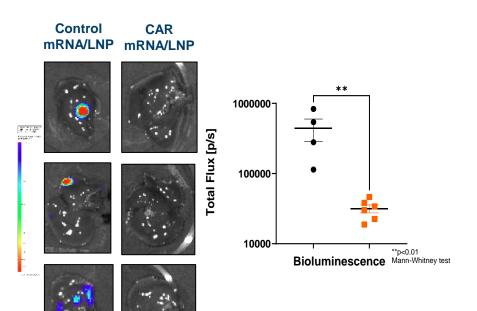

# Redirecting endogenous myeloid cells with mRNA for cancer immunotherapy



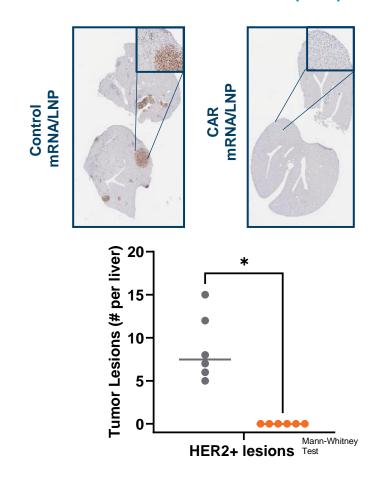
#### **Direct TAM reprogramming shrinks tumors\***



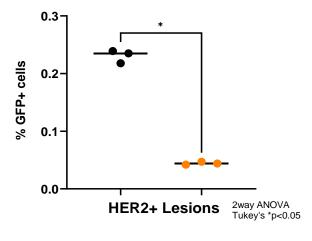
#### CAR Distribution in vivo (Mouse Blood)







# In Vivo CAR-M Suppresses Liver and Lung Metastasis

Systemic LNP administration in humanized model leads to robust disease control


#### **Tumor Lesions in Liver (BLI)**

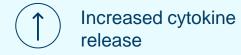


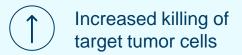
#### **Tumor Lesions/Liver (IHC)**



#### **Tumor Lesions in Lung (IHC)**

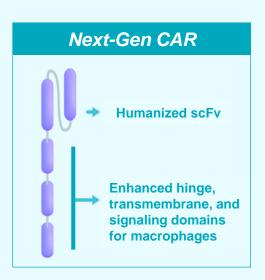


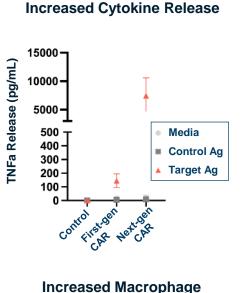

- CAR mRNA/LNP
- Control mRNA/LNP

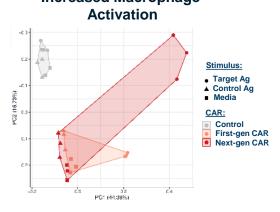


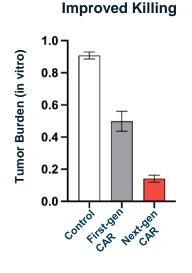

# Next-Gen CAR Design Has Superior Profile

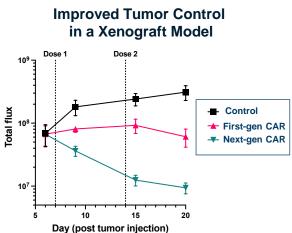
Enhanced CAR hinge, transmembrane, and signaling components incorporated into CT-1119


#### **Key Takeaways\***





Increased macrophage activation


1 Improved tumor control in vivo













# SIRPα Knockdown Enhances Anti-Tumor Activity of CAR-M

Overcoming the CD47 checkpoint enhances CAR-M potency

#### **Key Takeaways**

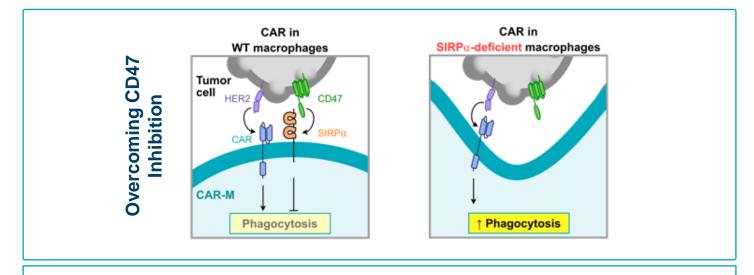


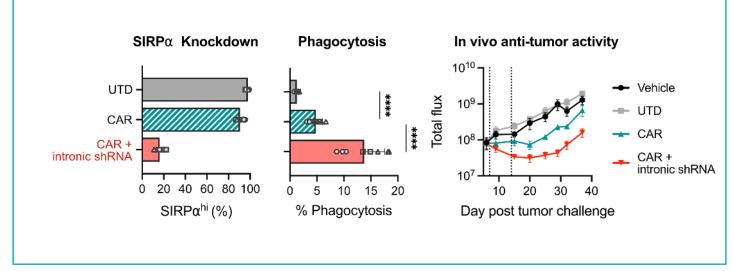
Overcomes the CD47 "do-not-eat-me" signal expressed by tumor cells



Increased killing, activation, and cytokine release




Improved tumor control in vivo




No phagocytosis of normal tissue



Proprietary intronic shRNA platform





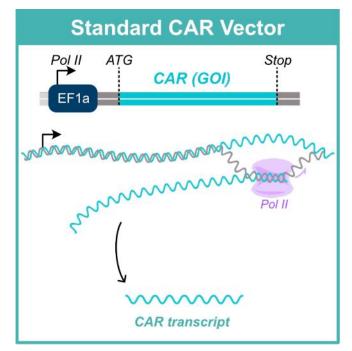


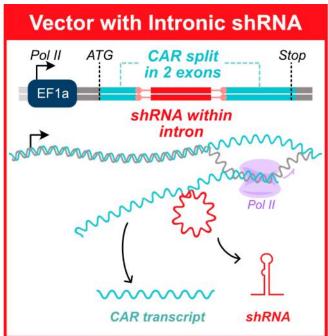
# Intronic shRNA Enables CAR Delivery and Gene Silencing

Proprietary technology utilized for the first time in CT-1119

#### **Key Takeaways**




Simultaneous CAR delivery and SIRPa silencing with a single vector




Single Ad5f35 vector, 1-day CAR-Monocyte process



More efficient than CRISPR/Cas9 editing\*







# **Strong Leadership Team and Advisors**

Deep research, clinical and operational expertise in cell and gene therapy and oncology



#### Management



STEVEN KELLY President & CEO



PHARMD PHD Co-Founder & CSO



MICHAEL KLICHINSKY, DANIEL CUSHING, PHD Chief Technology & **Development Officer** 



**RICHARD MORRIS** Chief Financial Officer



**TERRY SHIELDS** SVP. Human Resources



**ERIC SIEGEL** General Counsel & Corporate Secretary



TOM WILTON Chief Business Officer

#### **Board of Directors**

- Sanford Zweifach Chairperson
- Steven Kelly President and CEO
- Briggs Morrison, MD Independent Director
- Björn Odlander, PhD HealthCap
- Regina Hodits, PhD Wellington Partners
- Chidozie Ugwumba SymBiosis
- Michael Torok Independent Director

#### **Scientific Advisory Board**

- Saar Gill, MD, PhD Penn (Co-Founder, Co-Inventor)
- Carl June, MD Penn (Co-Inventor)
- Hy Levitsky, MD Century Tx
- Prasad S. Adusamilli, MD FACS MSKCC
- Nina Bhardwaj, MD, PhD Mt Sinai
- Lisa Coussens, PhD OHSU
- Lin Guey, PhD Moderna Tx
- Padmanee Sharma, MD, PhD MDACC

