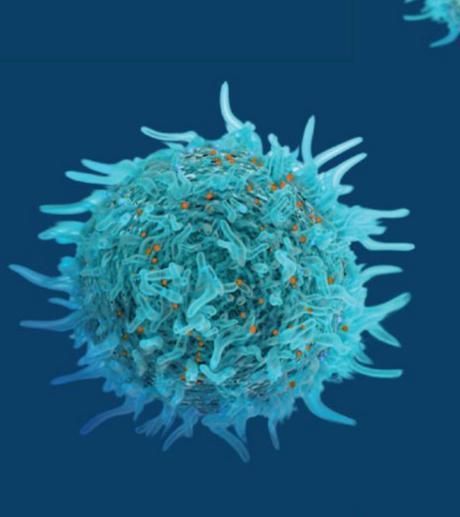
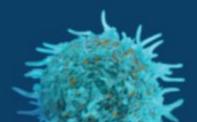


HARNESSING THE POWER OF MACROPHAGES

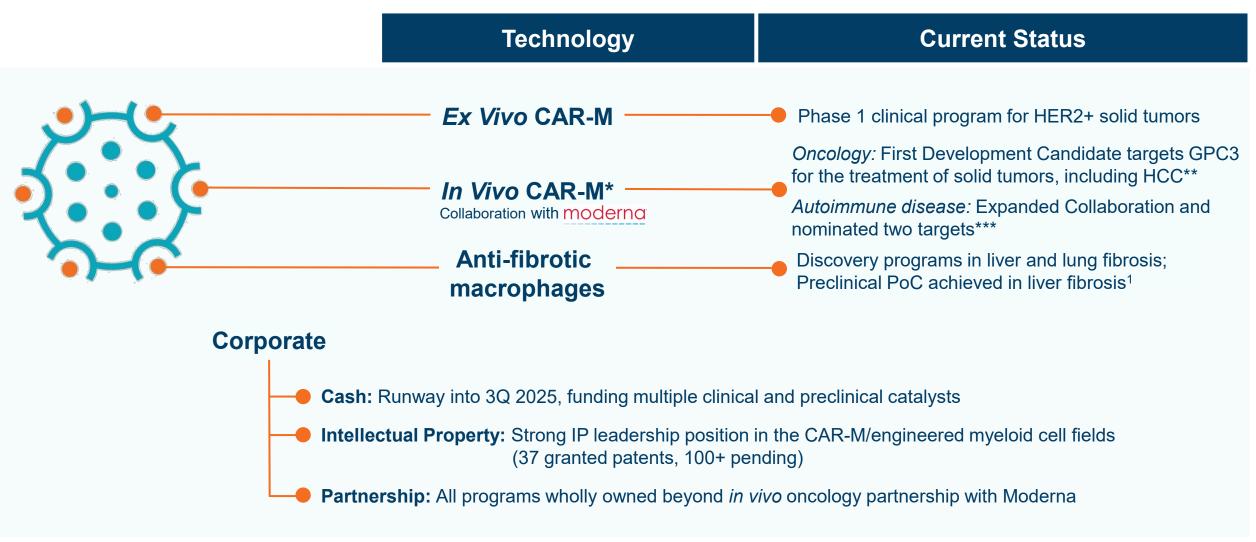
September 2024



Cautionary Note Regarding Forward-Looking Statements


Statements in this slide deck about future expectations, plans and prospects, as well as any other statements regarding matters that are not historical facts, may constitute "forward-looking statements" within the meaning of The Private Securities Litigation Reform Act of 1995. These statements include, but are not limited to, statements relating to Carisma's business, strategy, future operations, cash runway, the advancement of Carisma's product candidates and product pipeline, and clinical development of Carisma's product candidates, including expectations regarding timing of initiation and results of clinical trials. The words "anticipate," "believe," "contemplate," "continue," "could," "estimate," "expect," "goals," "intend," "may," "might," "outlook," "plan," "project," "potential," "predict," "target," "possible," "will," "would," "could," and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words

Any forward-looking statements are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in, or implied by, such forward-looking statements. These risks and uncertainties include, but are not limited to, (i) Carisma's ability to realize the anticipated benefits of its pipeline reprioritization and corporate restructuring, (ii) Carisma's ability to obtain, maintain and protect its intellectual property rights related to its product candidates; (iii) Carisma's ability to advance the development of its product candidates under the timelines it anticipates in planned and future clinical trials and with its current financial and human resources; (iv) Carisma's ability to replicate in later clinical trials positive results found in preclinical studies and early-stage clinical trials of its product candidates; (v) Carisma's ability to realize the anticipated benefits of its research and development programs, strategic partnerships, research and licensing programs and academic and other collaborations; (vi) regulatory requirements or developments and Carisma's ability to obtain and maintain necessary approvals from the U.S. Food and Drug Administration and other regulatory authorities related to its product candidates; (vii) changes to clinical trial designs and regulatory pathways; (viii) risks associated with Carisma's ability to manage expenses; (ix) changes in capital resource requirements; (x) risks related to the inability of Carisma to obtain sufficient additional capital to continue to advance its product candidates and its preclinical programs; and (xi) legislative, regulatory, political and economic developments. For a discussion of these risks and uncertainties, and other important factors, any of which could cause Carisma's actual results to differ from those contained in the forward-looking statements, see the "Risk Factors" set forth in the Company's Annual Report on Form 10-K for the year ended December 31, 2023, the Company's Quarterly Report on Form 10-Q for the period ended June 30, 2024, as well as discussions of potential risks, uncertainties, and other important factors in Carisma's other recent filings with the Securities and Exchange Commission. Any forward-looking statements that are made in this press release speak as of the date of this press release. Carisma undertakes no obligation to revise the forward-looking statements or to update them to reflect events or circumstances occurring after the date of this press release, whether as a result of new information, future developments or otherwise, except as required by the federal securities laws.

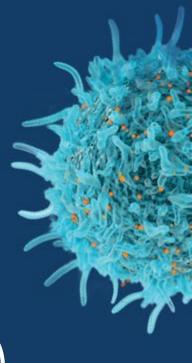


Pioneering engineered macrophages in oncology and beyond

Engineering Myeloid Cells: CAR-M and Beyond

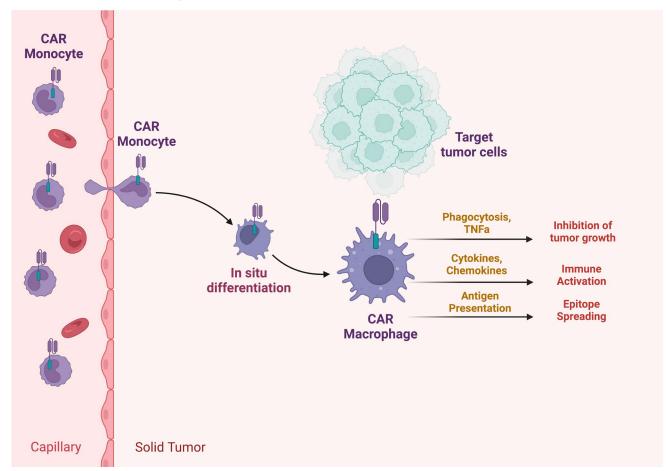
First-in-Class Pipeline

Multiple value inflection points across therapeutic areas and modalities


PRODUCT CANDIDATE	INDICATION	PLATFORM	DISCOVERY	PRE-CLINICAL	PHASE 1	PHASE 2	PHASE 3	COLLABORATOR
Oncology								
CT-0525	HER2+ solid tumors	CAR-Monocyte (Autologous)			Next miles	tone: Initial Phase 1	data¹ (4Q 2024)	
Undisclosed	GPC3+ solid tumors ²	CAR-M/mRNA/LNP (In Vivo)		Next n	nilestone: IND filing	(Undisclosed)		moderna
CT-1119*	Mesothelin+ solid tumors	CAR-Monocyte ³ (Autologous)		Next mileston	e: IND filing (Undisc	closed)		
4 Nominated Targets	Undisclosed	CAR-M/mRNA/LNP (In Vivo)	No	ext milestone: Lead no	mination (Undisclose	ed)		moderna
Fibrosis and	Autoimmune							
TBD	Liver Fibrosis	Engineered macrophage	Ne	ext milestone: Develop	ment candidate nom	ination ¹ (1Q 2025)		
2 Nominated ⁴ Targets	Autoimmune Disease	CAR-M/mRNA/LNP (In Vivo)	Ne	ext milestone: Lead nor	mination (Undisclose	ed)		moderna

Targeting HER2:

From CAR-Macrophages (CT-0508) to CAR-Monocytes (CT-0525)



Macrophages are Ideally Suited for Solid Tumor Cell Therapy

CAR-M: Carisma's proprietary technology converts myeloid cells into targeted therapies with CARs

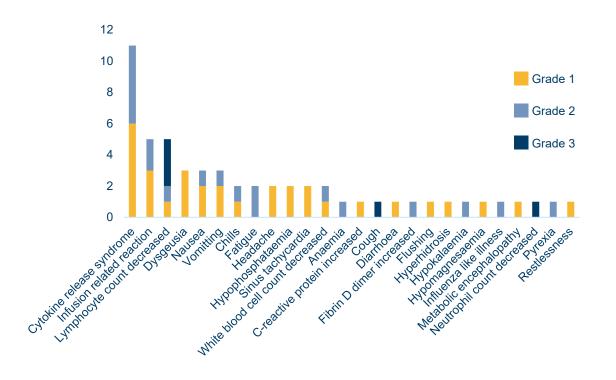
CAR-Monocytes differentiate into CAR-Macrophages in vivo

- Myeloid cells are abundantly recruited to tumors
- Carisma's proprietary platforms enable robust ex vivo and in vivo myeloid cell engineering with CARs
- The CAR-M mechanism of action includes:
 - Eradication of cancer cells via phagocytosis
 - Immune activation via cytokine release
 - · Recruitment of immune cells via chemokine release
 - Antigen presentation to T cells leading to adaptive antitumor immunity
- Monocytes differentiate into macrophages in tissues
- Initial clinical development focused on monocyte-derivedmacrophages to evaluate the safety of the final effector cell
- Ongoing development is focused on precursor monocytes which have biological, pharmacokinetic, and manufacturing advantages

Key Learnings from CT-0508 Monotherapy Study*

CT-0508 was a well-tolerated and active therapy; strong rationale for further development of anti-HER2 CAR-M

	Safety and Tolerability	Well-tolerated with no severe CRS, no ICANS, and no dose-limiting toxicities
	Manufacturing	 Successful autologous manufacturing with high CAR expression, viability, purity, M1 phenotype Median dose 1.66x10⁹ cells
	Anti-tumor activity	 SD in 29% of patients (n=4/14), per RECIST 1.1 Clear evidence of activity as measured by ctDNA
(+)	Mechanism of action	 Remodeling of the TME observed Evidence of immune system activation correlating with Best Overall Response
	Pharmacokinetics	 CT-0508 detected in tumor samples of 75% of patients at Day 8, 27% at Week 4 CT-0508 detected at low numbers (~1-2 per biopsy slide)
	Observations	 Activity of CT-0508 superior in patients with higher HER2 expression HER2 3+ pts experienced greater anti-tumor effects with SD in 44% vs 0% in HER2 2+ Lower baseline CD8 T cell exhaustion correlated with improved Best Overall Response


CT-0508 is well-tolerated and shows clear evidence of activity in advanced HER2 3+ patients Persistence, trafficking, dose, and exhaustion of patient T cells limit clinical potential

CT-0508 is Well-Tolerated with No Dose Limiting Toxicities

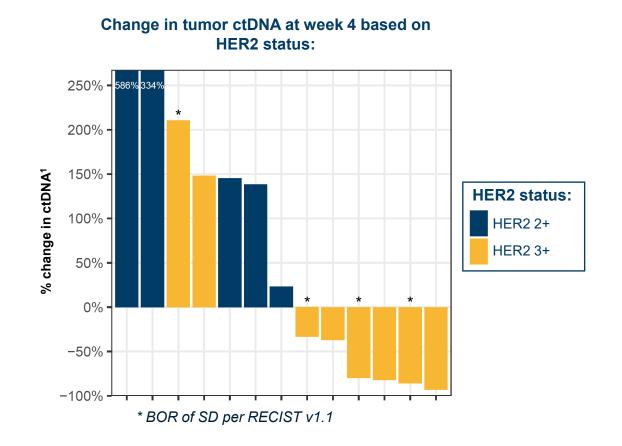
Preliminary data supports a safe and well-tolerated product profile

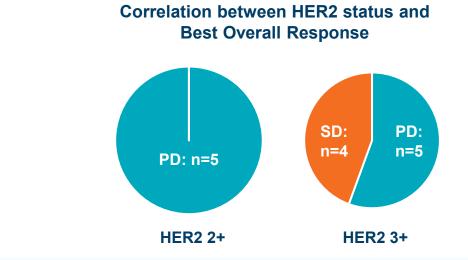
Number of Adverse Events

Adverse Event Data by Patient

	G1: Fractionated	G2: Bolus	Combined
Patients Treated	N=9 (%)	N=5 (%)	N=14 (%)
Cytokine release syndrome (CRS)	h (h/)	3 (60)	9 (64)
Grade 1-2	6 (67)	3 (60)	9 (64)
Grade 3-4	0 (0)	0 (0)	0 (0)
Infusion Reaction	2 (22)	1 (20)	3 (21)
Grade 1-2	2 (22)	1 (20)	3 (21)
Grade 3-4	0 (0)	0 (0)	0 (0)
ICANS	0 (0)	0 (0)	0 (0)
SAEs Related To Treatment ¹	2 (22)	3 (60)	5 (36)

Similar safety profile between Group 1 and Group 2


No severe CRS or ICANS

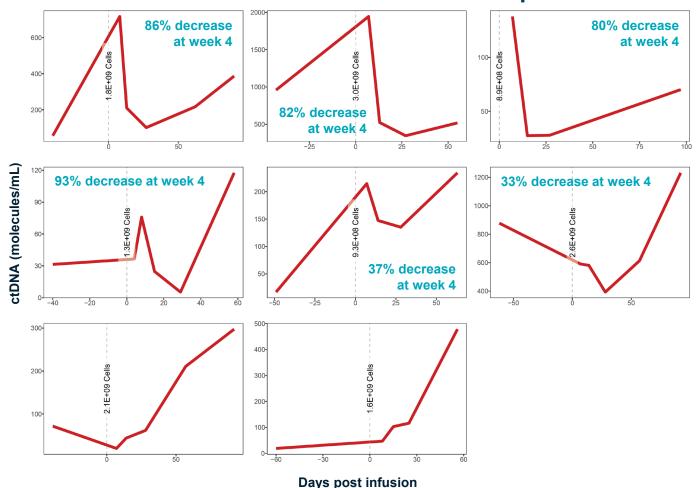

Majority of adverse events were Grade 1-2

Clinical Activity Observed in HER2 3+ Patients

Correlation of target expression and clinical activity supports mechanism of action

KEY TAKEAWAYS

- Best Overall Response of Stable Disease was seen in HER2 3+ (n=4/9, 44% SD)
- All pts with HER2 2+ tumors had PD


Clinical activity as measured by imaging or ctDNA correlates with HER2 expression

ctDNA Reduction Observed in 75% of HER2 3+ Patients

ctDNA reductions are clear evidence of clinical activity

ctDNA in 8 evaluable HER2 3+ pts

KEY TAKEAWAYS

- 75% (6/8) of HER2 3+ patients exhibited a decrease in ctDNA, indicating anti-tumor activity
- Up to 93% decrease in ctDNA levels
- Decreases were observed in multiple tumor types
- Peak response occurred ~4 weeks post CT-0508 infusion, suggesting potential timing for redosing
- Consistent with clinical assessments, no decreases in ctDNA were observed in HER2 2+ patients

CAR-Macrophage Monotherapy: Individual Case Study

Activity in patient with HER2 3+ inflammatory breast cancer with skin involvement

Cancer Type & Prior History

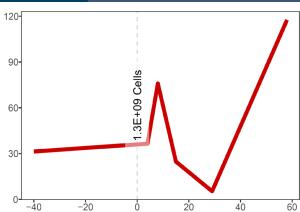
- Stage IV Inflammatory Breast Cancer (IBC)
- HER2 3+
- Patient progressed on 8 prior lines of therapy

Dosing

Patient received 1.3E+09 cells as bolus administration

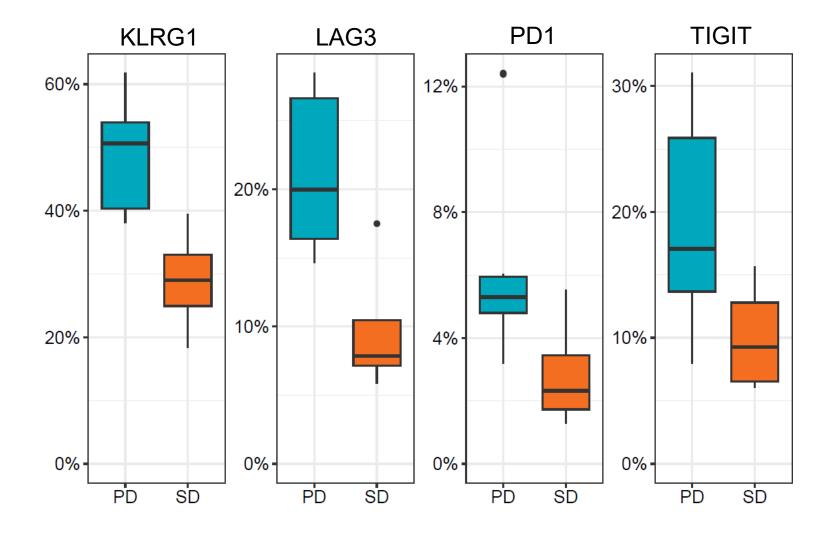
Clinical assessments

- 93% reduction in ctDNA at week 4, consistent with skin lesion improvement post infusion
- Patient progressed at first restaging scan per RECIST v1.1 (increase in target lesion and new lesion)


Prior to treatment

Following CT-0508 treatment

Circulating Tumor DNA: 93% reduction



9th line HER2 3+ inflammatory breast cancer demonstrated improvement in cancerous skin lesion and concomitant deep reduction (93%) in ctDNA

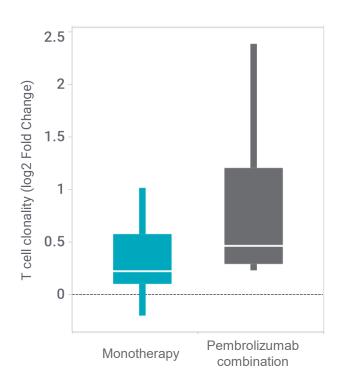
T cell Exhaustion Was a Limiting Factor to CAR-Macrophage Efficacy

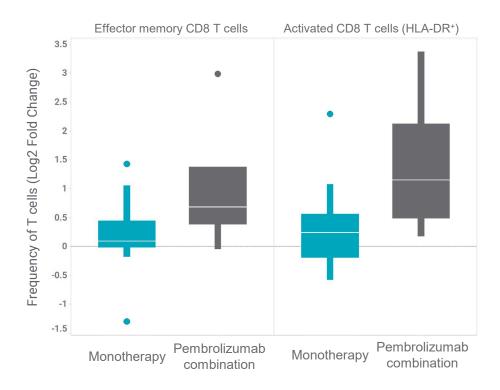
Study 101 patients with lower baseline CD8 T cell exhaustion (in blood) trended toward Stable Disease

Key Learnings from CT-0508+Pembrolizumab Combination*

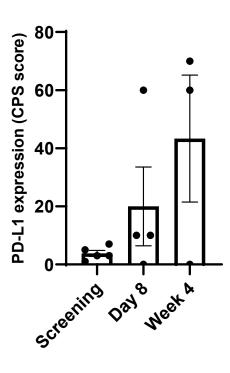
Study successfully met its primary endpoint of safety, tolerability and manufacturing feasibility

	Safety and Tolerability	Well-tolerated with no severe CRS, no ICANs, and no on-target off-tumor toxicity
	Feasibility	 Successful manufacturing of CT-0508 for 6/6 pts; Median dose of 2.7x10⁹ cells administered
(Anti-tumor activity	 SD seen in 1/6 patients; heavily pretreated HER2 3+ esophageal adenocarcinoma Mixed response with 46% reduction in one of two target lesions in this patient 3/6 patients either treated with corticosteroids or presented with baseline HLA-I loss of heterozygosity, both potentially limiting the CAR-M mechanism of action
	Synergistic immune activation	 Increase in peripheral blood T cell clonality compared to CT-0508 alone Increase in the frequency of activated and effector memory CD8+ T cell in the peripheral blood compared to CT-0508 alone Activation of the TME, leading to an increase in the PD-L1 CPS – a biomarker associated with improved response to immunotherapy

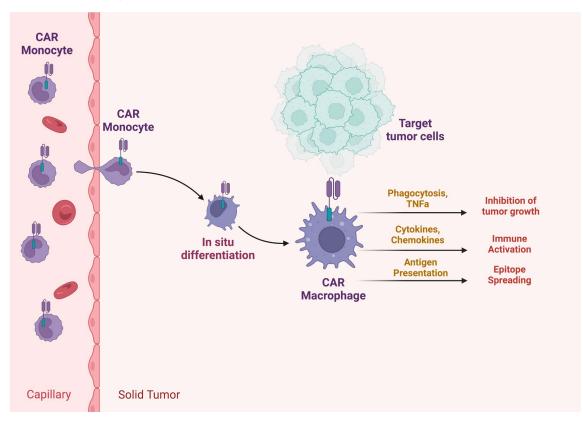

Combination of CT-0508 and pembrolizumab was well tolerated and the checkpoint inhibitor combination strategy will be further explored with our CT-0525 lead program


Synergistic Immune Activation

Pembrolizumab Potentiates the Ability of CT-0508 to Stimulate the Adaptive Immune System


Increased T cell clonality (blood)¹

Increased effector memory and activated CD8 T cells (blood)²


Increased PDL1 CPS in TME, a biomarker of CPI response³

From CAR-Macrophage to CAR-Monocyte:

Monocytes are a favorable cell type for solid tumor cell therapy

CAR-Monocyte Mechanism of Action:

Benefits to the CAR-Monocyte platform:

- Increased persistence¹
- Increased tumor infiltration¹
- Increased anti-tumor activity¹
- In vivo differentiation into CAR-macrophages¹
- Rapid manufacturing time (1 day)
- Increased cell yield enabling higher dose and dosing flexibility

Carisma's CAR-Monocyte Process:

- Proprietary, fully automated, autologous process with 1-day manufacturing
- Phenotype locked into M1 (inflammatory)
- High yield, CAR expression, viability and purity

CAR-Monocyte enables higher dose, improved persistence, enhanced trafficking, one day manufacturing, and potential for redosing²

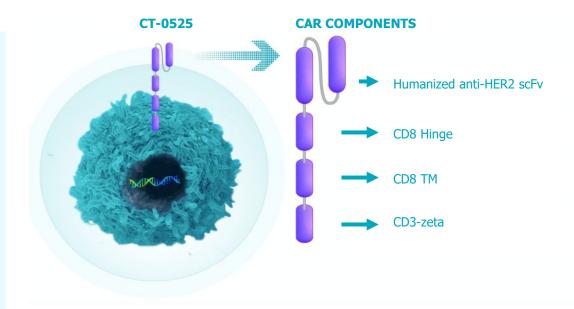
CT-0525: HER2 Targeted CAR-Monocyte (Macrophage Precursor)

Potential to significantly improve upon the observed biological activity of CT-0508

Highlights

Key Manufacturing Advantages Over CAR-Macrophage

- Higher cell numbers
- Faster manufacturing (1 day)
- Reduced COGS


Potential Biological Advantages Over CAR-Macrophage

- 2,000-fold increased exposure
 - · Manufacturing yield, trafficking, and persistence
- Increased potency
 - Killing, cytokine release, and antigen presentation
- Dosing flexibility (high yield enables redosing)

Development Plan & Timeline

- ✓ IND cleared
- ✓ First patient treated in 2Q 2024
- Initial data expected in 4Q 2024

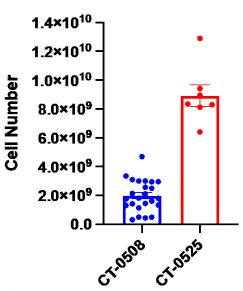
	CT-0525 Product Description		
Cells	Autologous monocytes		
Vector	Ad5f35		
Phenotype	M1		
CAR 1st Generation			

CT-0525 Directly Addresses the Key Limitations of CT-0508

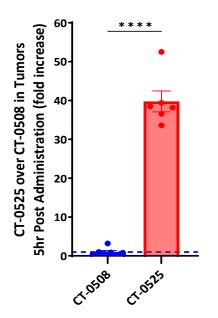
Pre-clinical models demonstrate increased potency with ~2,000-fold increased exposure over CT-0508

Dose

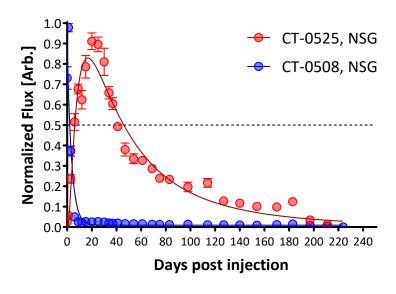
5X Cell Number


Trafficking

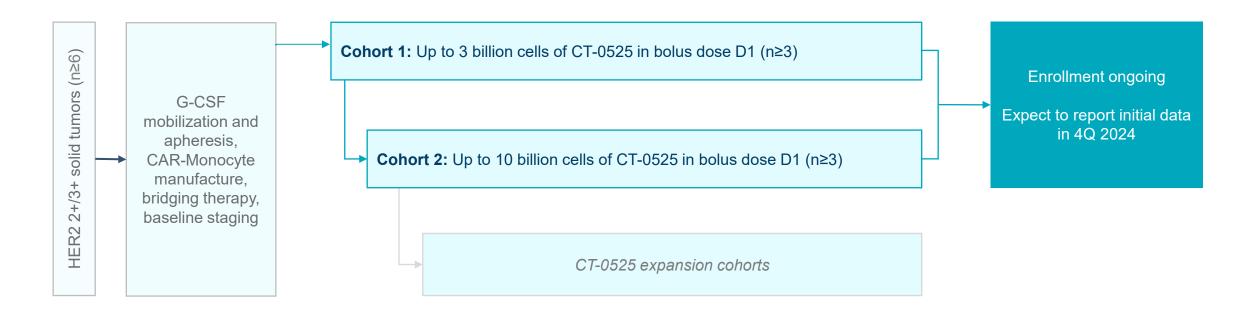
40XT

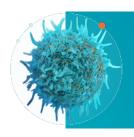

Persistence

10XT
in vivo half-life


Cells Produced from Single Apheresis:

Trafficking in solid tumor model:


CT-0525 half-life is ~45 days*:



CT-0525 Study 102: Phase 1 Clinical Trial Design

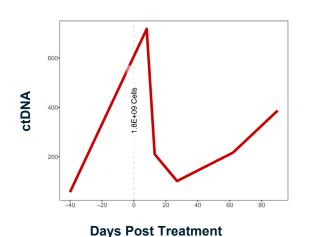
Assessing safety, tolerability, and manufacturing feasibility of CT-0525; additional analyses on TME impact

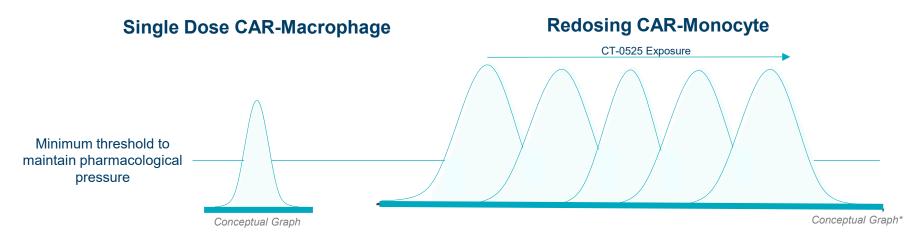
PRIMARY OUTCOMES

- Safety and tolerability
- Manufacturing feasibility

SECONDARY OUTCOMES¹

 In vivo cellular kinetics profile (levels, persistence, trafficking)


- ORR (RECIST 1.1)
- DOR



Potential to Enhance Response with Repeat Dosing of CT-0525

ctDNA: single dose CT-0508

Potential
Development
Strategies
for CT-0525

- Repeat dosing: Maintain pharmacologic pressure on tumor to potentially deepen and prolong response
- Combination therapy with pembrolizumab: Potentially increases long-term anti-tumor immunity and may lead to durable clinical benefit

CT-0525 Represents the Next Stage of CAR-M Development

Initial CT-0508 Study

Demonstrate initial safety, tolerability, feasibility & MOA:

CAR-Macrophage (CT-0508)

Well-tolerated
(Monotherapy & Combination)

Clinically active

Initial CT-0525 Cohorts

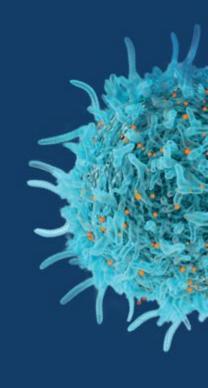
Demonstrate initial safety, tolerability, feasibility & MOA:

CAR-Monocyte (CT-0525)

Study ongoing
Initial data expected in 4Q
2024

CT-0525 Expansion Cohorts*

Optimize dosing regimen: Repeat dosing


CAR-Monocyte (CT-0525)

Evaluate in combination with checkpoint inhibitors

CAR-Monocyte (CT-0525)

In Vivo CAR-M: Oncology & Autoimmune disease

In Vivo CAR-M

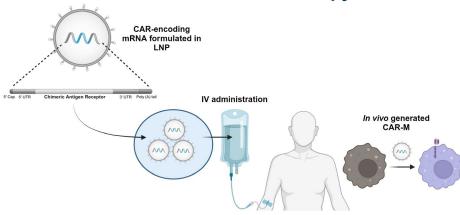
Collaboration with Moderna to discover, develop & commercialize in vivo CAR-M in oncology & autoimmune disease

Highlights

Collaboration Overview

- Combines Carisma's CAR macrophage technology with Moderna's mRNA/LNP platform
- In vivo CAR-M for oncology: First Development Candidate nominated, targets GPC3 for the treatment of HCC
 - Nomination triggered \$2 million milestone payment to Carisma
- In vivo CAR-M for autoimmune disease: Nominated two targets¹

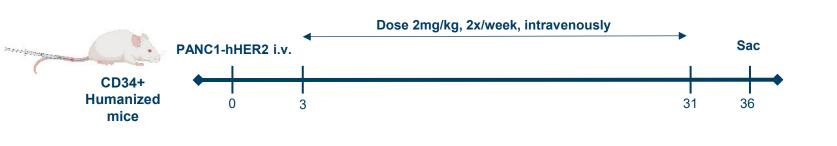
Key Advantages of in vivo CAR-M

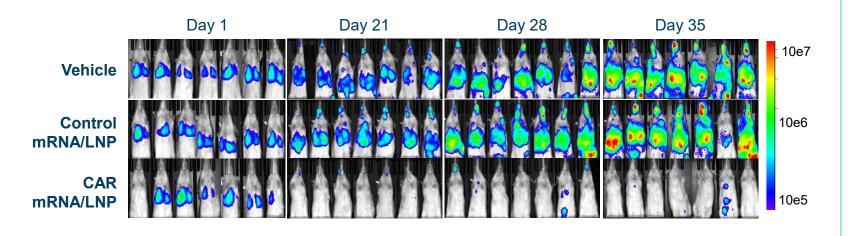

- Robust platform with applications in diverse indications
- Off-the-shelf product with ability to re-dose
- Maintains functionality of ex vivo CAR-M

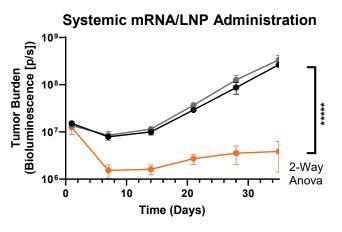
Key Takeaways from Pre-clinical Data

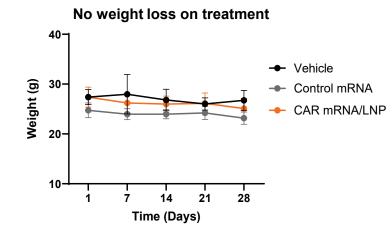
- mRNA/LNP CAR-M are highly functional
- In vivo CAR-M controls tumors upon regional or systemic administration and clears metastasis
- In vivo CAR-M well-tolerated in pre-clinical models

Redirecting endogenous myeloid cells with mRNA for cancer immunotherapy




II Callolla	aboration moderna Terms	
Number of Targets	Up to 12 (7 nominated)	
Upfront Payment	\$80M	
Total Potential Milestones and Royalties	\$3B+	
R&D Funding	Fully funded by Moderna	




In Vivo CAR-M Controls Metastatic Pancreatic Cancer

Systemic LNP administration in humanized mouse model of pancreatic cancer

Glypican-3 (GPC3): A validated target in HCC

HCC remains an area of significant unmet medical need

HCC overview:

- >40,000 new cases in the US in 2024, and the 2nd leading cause of cancer-deaths worldwide^{1,2}
- 22% 5-year survival for all HCC cases; 3.5% 5-year survival for advanced HCC¹

GPC3

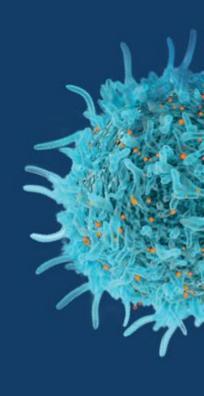
- GPC3 is a cell surface tumor-associated antigen
- Overexpressed in 70-80% of HCC cases, linked to poor prognosis²
- Silenced postnatally, minimally expressed in healthy tissues²
- Safety demonstrated with antibodies, ADCs, and CAR-T cells²
- No approved GPC3-targeted therapies

Development Candidate

- Direct in vivo CAR-M utilizing mRNA/LNP encoding a novel, next-gen CAR targeting GPC3
- Pre-clinical data demonstrate robust tumor control in animal models
- Additional pre-clinical data will be presented in 2024

In Vivo CAR-M: Next Steps

Strategic alliance, fully funded by Moderna


Rationale PoC achieved Next Steps

- Off-the-shelf: In vivo CAR-M are LNP/mRNA based and engineer patient myeloid cells directly within their body
- ✓ Robust data:
 - Platform: Pre-clinical data demonstrate robust production of CAR-M in vivo leading to anti-tumor activity in multiple models
 - GPC3 target validated preclinically

- Lead Program: Advance lead program, a GPC3 targeted in vivo CAR-M, into clinic for HCC
- Advance four additional oncology¹ targets
- Advance two autoimmune disease targets
- Expand the universe of selected targets

Developing macrophage cell therapies beyond oncology: Fibrosis

Macrophages have Robust Anti-fibrotic and Anti-inflammatory Potential

Substantial Unmet Need In Liver Fibrosis

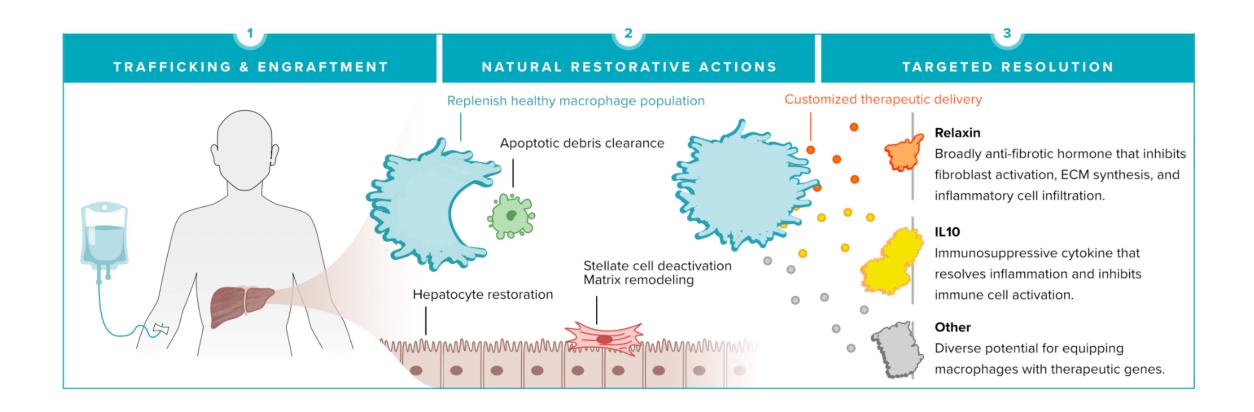
Large (and growing) patient population

Limited success in improving fibrosis in late-stage MASH patients

Clinical Evidence of Macrophage Cell Therapy

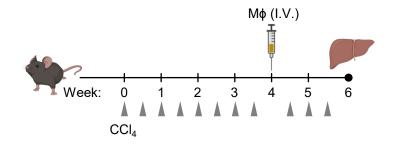
Non-engineered macrophage cell therapy has demonstrated therapeutic potential in the clinic^{1,2}

Promising Preclinical Results from Engineered Macrophages


Carisma's engineered macrophages have shown significant reduction of established liver fibrosis in multiple preclinical studies³

Carisma's pre-clinical proof-of-concept data demonstrate that engineered macrophages can improve liver fibrosis and outperform non-engineered macrophages³

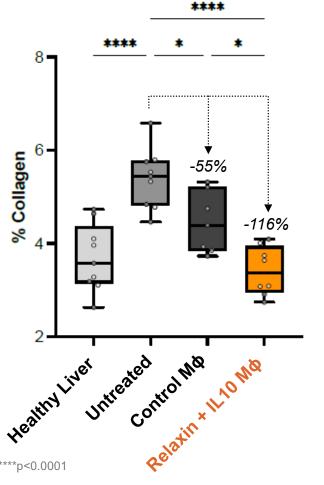
Carisma's Platform: Engineered Anti-fibrotic Macrophages

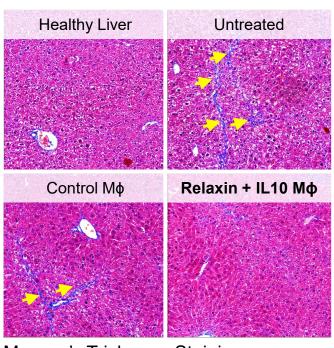

Pre-clinical proof-of-concept with relaxin-IL10 co-expressing macrophages

A Single Dose of Engineered Macrophages Significantly Reduced Liver Fibrosis¹

CCI4 model of established fibrosis

Engineered M ϕ significantly reduced hepatic collagen

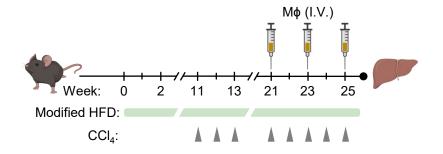

Control Мф:


• 55% reduction in collagen

Relaxin-IL10 Mo:

- >100% reduction in collagen²
- 8/8 mice return to healthy range

Relaxin-IL10 macrophages <u>significantly reduced</u> established fibrosis

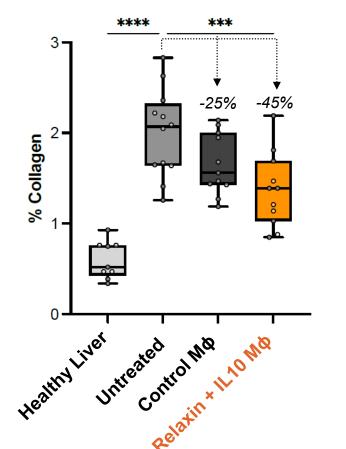

Masson's Trichrome Staining

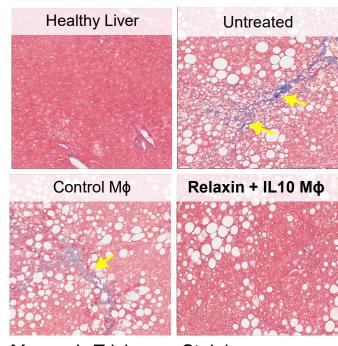
Fibrosis shown in blue

Engineered Macrophages Reduced Liver Fibrosis in a High Fat Diet-Induced Model¹

High fat diet MASH model

Engineered M ϕ significantly reduced fibrotic collagen


Control Мф:


• 25% reduction in collagen

Relaxin-IL10 Мф:

• 45% reduction²

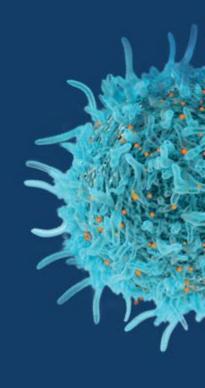
Relaxin-IL10 macrophages significantly <u>reduced</u> fibrosis

Masson's Trichrome Staining

Fibrosis shown in blue

Liver Fibrosis: Next steps

Wholly-owned program


Rationale PoC achieved Next Steps

- Resolution of liver fibrosis: Engineered macrophages enhance innate activity of macrophages in liver
- Off-the-shelf:
 Development of an off-the-shelf approach ongoing
- ✓ Pre-clinical PoC data shows anti-fibrotic effect with relaxin-IL10 as payload
- ✓ Clinical data with nonengineered macrophages have shown clinical benefit in patients

- Present additional liver fibrosis data at AASLD November 2024
- Optimize anti-fibrotic constructs
- Nomination of development candidate expected in 1Q 2025
- Expand fibrosis program beyond liver

Corporate & Financial

Financial Snapshot

As of June 30, 2024

41.5M

Shares outstanding

\$40.4M

Cash and cash equivalents

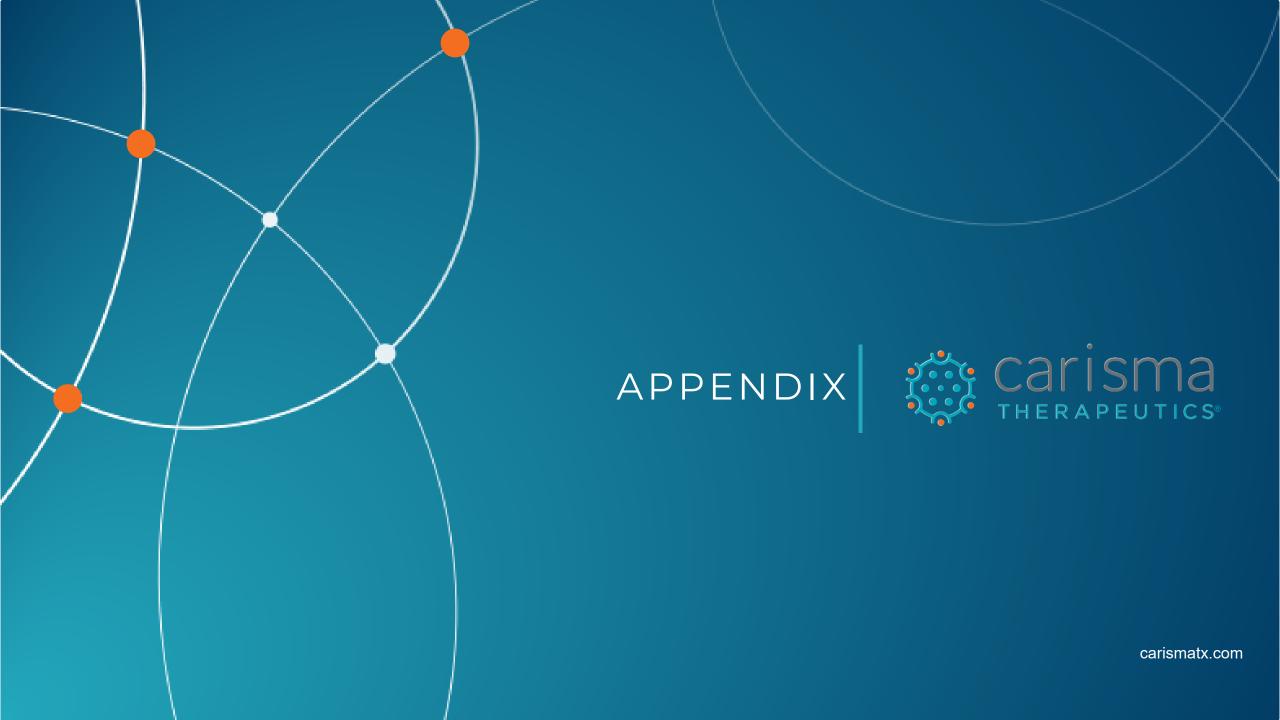
Into 3Q 2025

Expected cash runway

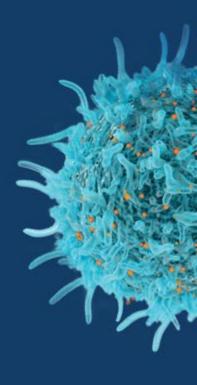
Operating Plan and Corporate Milestones

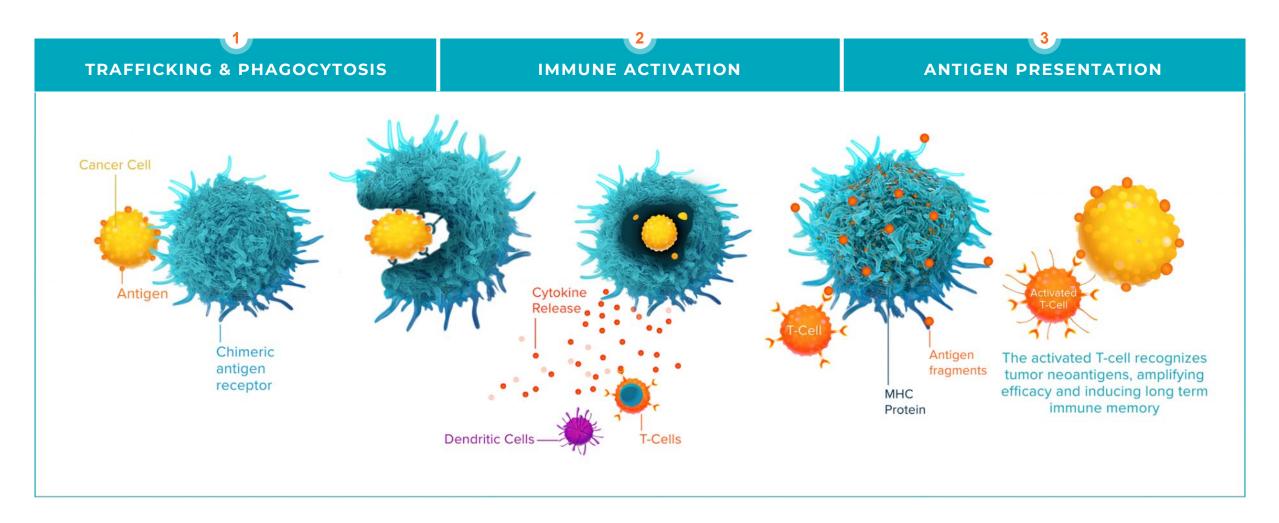
Capital efficient R&D program designed to reach significant value inflection points

INDICATION	INDICATION PRODUCT CANDIDATE		RECENT AND ANTICIPATED MILESTONES		
Oncology					
		CAR-Monocyte (Autologous)	4Q'23 IND cleared ✓		
LIEDO	CT-0525		2Q'24 Treat first patient √		
HER2+ solid tumors			4Q'24 Report initial data from Phase 1 study		
-	CT-0508	CAR-Macrophage (Autologous)	3Q'24 Report data from Phase 1 combination sub-study ✓		
	Undisclosed	CAR-M/mRNA/LNP (In Vivo)	4Q'23 Nominate first <i>in vivo</i> CAR-M lead candidate ✓		
GPC3+ solid tumors			2Q'24 Development Candidate nominated √		
Solid tulliois			TBD IND submission		
Undisclosed	4 Nominated Targets ¹	CAR-M/mRNA/LNP (In Vivo)	TBD Nominate next lead candidate □		
Fibrosis and Immunology					
Liver Fibrosis	TBD	Engineered macrophage	2Q'24 Report preclinical proof of concept data (ASGCT 2024) ✓		
			1Q'25 Nominate Development Candidate		
Autoimmune disease	2 Nominated Targets	CAR-M/mRNA/LNP (In Vivo)	TBD Nominate lead candidate		


Drive to 2025

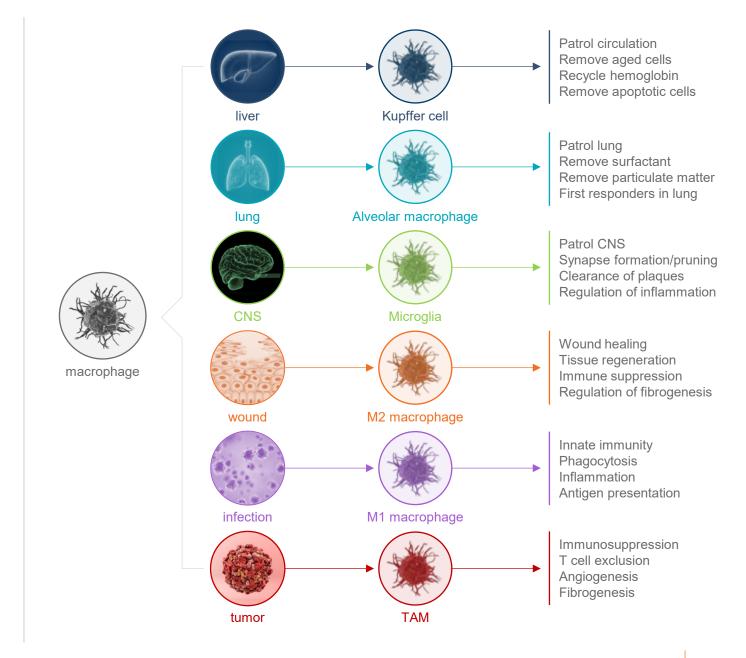
Leverage world-leading macrophage engineering platform to deliver three product opportunities


Program	2024 Tactical Plan	2025 Objectives
HER2 CAR-M	 ◆ CT-0525¹ Safety Study Cohort 1: 3 Billion Cells ◆ CT-0525¹ Safety Study Cohort 2: 10 Billion Cells 	Phase II/III Regimen Identified ²
In vivo CAR-M (Collaboration with Moderna)	 ◆ IND-enabling activities for lead candidate ◆ Pre-clinical studies for additional identified targets 	Undisclosed Development & Regulatory Milestones
Liver Fibrosis	♦ Preclinical studies for development candidate nomination	Development Candidate Nominated & IND-enabling Activities


Carisma Platform

CAR-M Mechanism of Action in Oncology

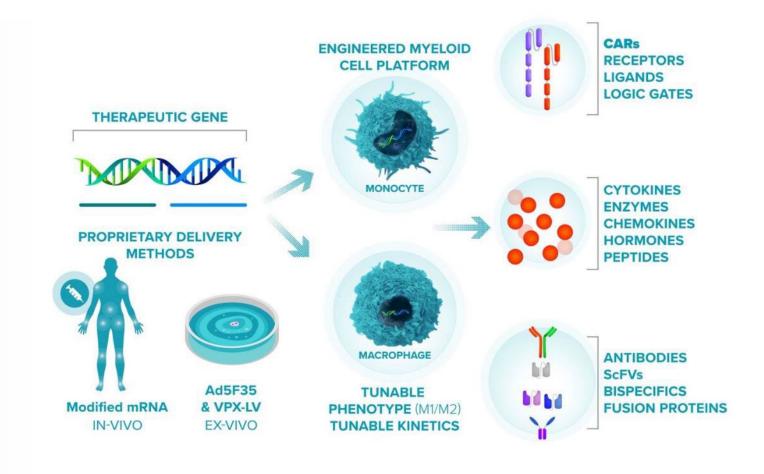
Potential to address the challenges of treating solid tumors with cell therapies



Macrophages: The Ultimate Multitasker

Macrophages can:

- Traffic to tumors/inflammation
- Phagocytose
- Initiate immune response
- Present antigen to T-cells
- Resolve fibrosis
- Induce tissue regeneration
- Resolve immune response



CARISMA's Broad Myeloid Cell Engineering Platform

Proprietary technology, world-leading macrophage engineering know-how, and strong IP position ensure leadership position

Monocyte & Macrophage Engineering Capabilities:

- Proprietary platforms for robust/durable monocyte & macrophage engineering
- Established rapid GMP manufacturing processes for monocytes and macrophages
- In vivo myeloid cell reprogramming using LNP/mRNA technology
- Novel next-gen CAR constructs
- Cytokine targeting with switch receptor platform
- Applications beyond oncology

Strong Patent Position

Broad Coverage for Monocyte and Macrophage Targeted Therapies

37
PATENTS GRANTED
WORLDWIDE*

100+
PATENT APPLICATIONS

PENDING WORLDWIDE*

- Worldwide patent coverage with issued and pending applications in major markets
- Multiple issued US patents covering CAR-M composition of matter
- Broad patent portfolio covering:
 - Viral and non-viral methods for engineering monocytes and macrophages
 - Methods for treatment of protein aggregate disorders
 - Methods for in vivo targeting of monocytes and macrophages

Strong Leadership Team and Advisors

Deep research, clinical and operational expertise in cell and gene therapy and oncology

Management

President &
Chief Executive Officer

MICHAEL KLICHINSKY,
PHARMD PHD
Co-Founder &
Chief Scientific Officer

EUGENE KENNEDY, MD
Chief Medical Officer

KENNETH LOCKESVP, Technical Operations

RICHARD MORRIS
Chief Financial Officer

TERRY SHIELDS
SVP, Human Resources

ERIC SIEGELGeneral Counsel &
Corporate Secretary

TOM WILTON
Chief Business Officer

Board of Directors

- Sanford Zweifach Chairperson
- Steven Kelly President and CEO
- Briggs Morrison, MD Independent Director
- Michael Torok Independent Director
- John Hohneker, MD Independent Director
- David Scadden, MD Independent Director
- Marella Thorell Independent Director

Scientific Advisory Board

- Saar Gill, MD, PhD Penn (Co-Founder, Co-Inventor)
- Carl June, MD Penn (Co-Inventor)
- Hy Levitsky, MD Century Tx
- Prasad S. Adusamilli. MD FACS MSKCC
- Nina Bhardwaj, MD, PhD Mt Sinai
- Lisa Coussens, PhD OHSU
- Lin Guey, PhD Moderna Tx
- Scott Friedman, MD Mt Sinai
- Ira Tabas, MD, PhD Columbia University

CAR-Monocytes: Differentiated from CAR-T and CAR-NK

CAR-M has advantages that are potentially key for solid tumor oncology

	CAR-T	CAR-NK	CAR-Mono
Mechanism of Action			
Effector Cell	ell CD4/CD8 T cells Natural Killer Cells		Monocytes
Persistence	Months/Years	Days/Weeks	45-day half-life*
Trafficking Potential	Low	Low	High
TME Activation	Low	Low	High
Antigen Presentation	None	None	High
Epitope Spreading	Low	Low	High
Safety			
Chemotherapy Conditioning	Yes	Yes	No
CRS / ICANS	High / High	Low / Low	Low / Low
Manufacturing			
Manufacturing Time	Days to weeks	Days to weeks	1 day

CAR-M has direct anti-tumor effects as well as immune activation

CAR Monocytes: Numerous Advantages Over CAR Macrophages

	CAR Macrophage	CAR Monocyte	
Cell Characteristics			
Origin	Monocyte-derived macrophage (ex vivo differentiated for 7 days)	CD14+ monocyte from peripheral blood	
Natural location	Macrophages: Various tissues	Monocytes: Blood	
Cell size	16-20µm	10µm	
Differentiation Potential	M1/M2 polarization in response to cytokines	Macrophages or dendritic cells	
Trafficking Potential	Low (tissue resident cells)	High (blood to tissue via chemotaxis)	
Persistence	Limited (5-day half-life)	High (45-day half-life)	
lechanism of Action			
Direct Killing/Phagocytosis	Yes	Yes; increases w/ differentiation	
Cytokine/Chemokine Release	Yes	Yes	
Antigen Presentation	Yes	Yes	
Manufacturing/Dosing			
Manufacturing Time	8 days	1 day	
Cell Yield Per Apheresis	~2x10 ⁹	Up to 1x10 ¹⁰	
Chemotherapy Conditioning	No	No	
Ability to Re-dose	Limited	Up to 5 doses per apheresis	

Targeting HER2: CT-0525

CT-0525 Manufacturing Process

One day, automated process yielding up to 5x more cells per apheresis than CT-0508

Highlights

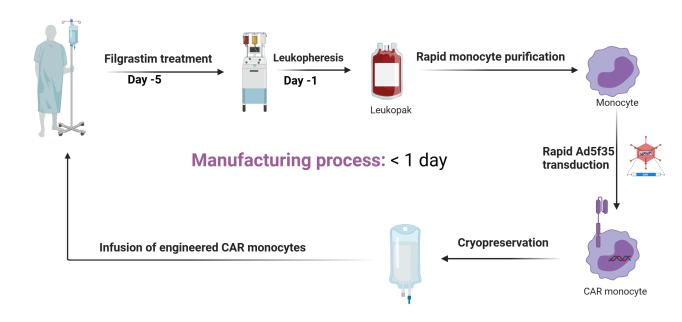
CAR Expression: >90%*



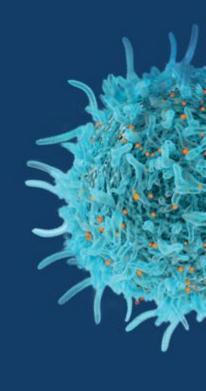
Viability: >90%*

Purity: >95%*

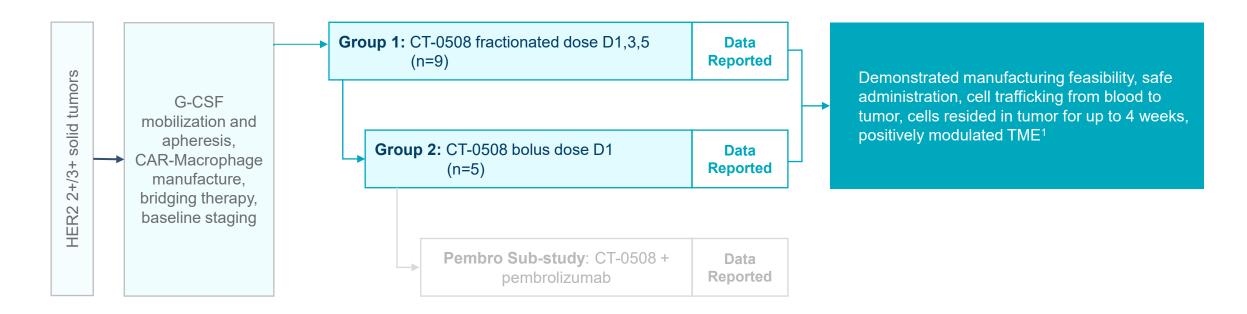
Ad5f35 (adenovirus) based process

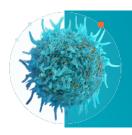


First patient successfully manufactured/treated in 2Q 2024


Can produce up to 10B cells

CAR-Monocyte Rapid Manufacturing Process


Targeting HER2: CT-0508 Monotherapy



CT-0508 Study 101: First in Human Phase 1 Clinical Design

Assessing safety, tolerability, feasibility and TME impact of CT-0508 monotherapy

PRIMARY OUTCOMES²

- Safety and tolerability
- Manufacturing feasibility

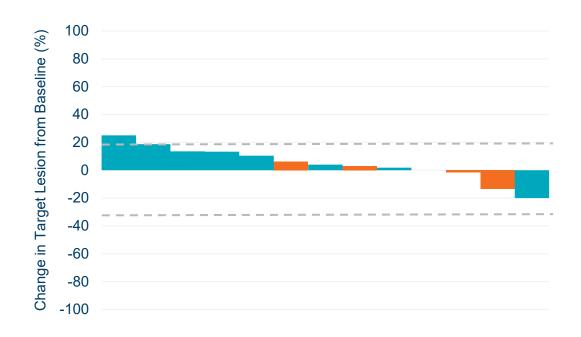
SECONDARY OUTCOMES & ADDITIONAL ANALYSES²

- ORR (RECIST 1.1)
- Trafficking
- TME activation

- T cell recruitment/activation
- T cell expansion/clonality

PFS

CT-0508 Study 101: Phase 1 Study Patient Demographics

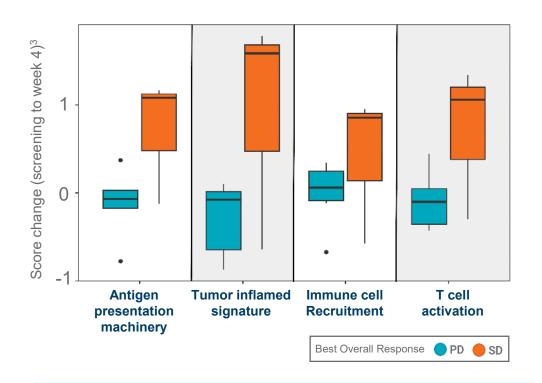

Heavily pre-treated patients with Stage IV HER2 2+/3+ solid tumors

Characteristics	N=14
Tumor Type, n (%) Breast Cancer Esophageal Cancer Salivary Carcinoma Cholangiocarcinoma Ovarian Cancer	8 (57.1) 2 (14.3) 2 (14.3) 1 (7.1) 1 (7.1)
HER2 Overexpression, n (%) IHC 3+ IHC 2+/FISH+	9 (64.3) 5 (35.7)
Pre-Treatment History Median Number of Prior Cancer Therapies, n (range) Median Number of Prior Anti-HER2 Therapies, n (range) Subjects with Prior Anti-HER2 Therapy	5 (2, 12) 2 (0, 9) 13 (92.9)
Tumor Mutational Burden (TMB) Low (<10 mut/Mb) High (≥10 mut/Mb) Unknown	11 (78.6) 2 (14.3)† 1 (7.1)
Microsatellite Instability (MSI) MSS/MSI-Low MSI-High Unknown	13 (92.9) 0 (0) 1 (7.1)

Early Efficacy Evaluation

Best Overall Response of Stable Disease

Best Overall Change in Tumor Burden


RESULTS

- Best Overall Response of Stable Disease in 4 of the 14 evaluated participants (28.6%)*+
- Largest reduction in target lesion
 - 20% in a breast cancer patient
 - 14% in a salivary gland cancer patient
- Stable Disease was enriched in HER2 3+ subpopulation (n=4/9, 44.4% SD)
- Stable Disease correlated with CT-0508 induced TME remodeling and T cell activation

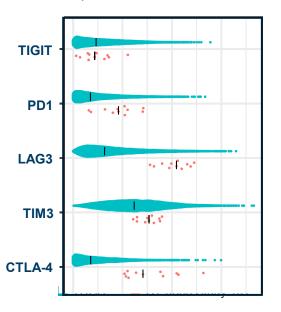
CT-0508 remodeled the TME and induced anti-tumor T cell immunity

Improved TME remodeling and T cell dynamics seen in patients that achieved Stable Disease

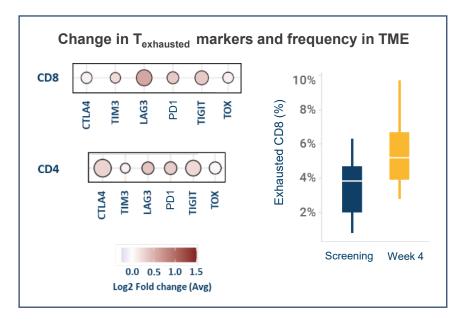
TME activation, based on multiple gene sets, was enriched in patients that had Stable Disease

Expanding T Cell Clones

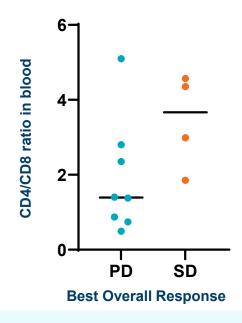
Emergent T Cell Clones


Accumulation of peripherally expanded and emergent T cell clones was increased in patients that had Stable Disease

T cell Exhaustion is a Limiting Factor to CAR-Macrophage Efficacy

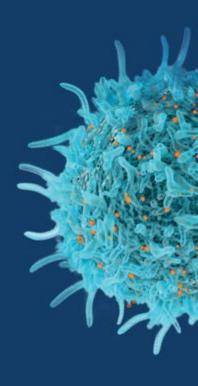

Study 101 patients show high baseline T cell exhaustion, and inhibitory pathways are further upregulated

T cell exhaustion markers in CT-0508 Study 101 pts compared to ~10,000 cancer patients in the TCGA database


High T cell exhaustion in the TME of Study 101 pts

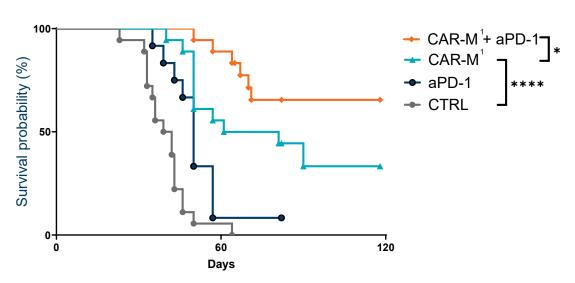
Changes in exhaustion markers (left) and exhausted CD8 T cell frequency (right) in the TME (Week 4 vs. Screening)

The pro-inflammatory effects of CT-0508 further upregulate inhibitory pathways

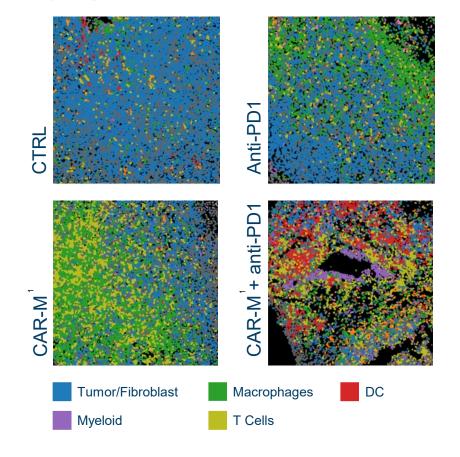

Correlation of outcomes with baseline peripheral blood T cell fitness

T cell fitness¹ correlates with clinical outcome

Targeting HER2: CAR-M + anti-PD1



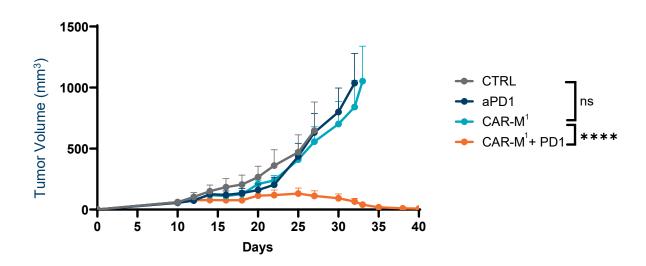
CAR-M + Anti-PD1: Robust Synergy


Synergy in a solid tumor model that is resistant to anti-PD1 monotherapy

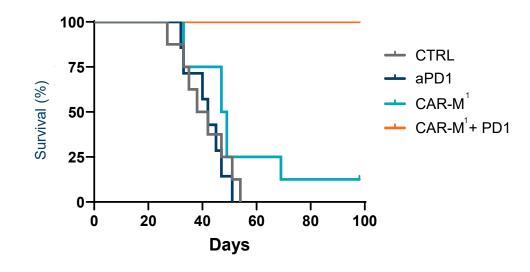
Synergistic anti-tumor activity

Syngeneic CT26-HER2 solid tumor model. Resistant to anti-PD1 monotherapy.

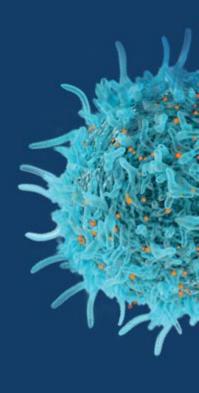
Synergistic TME modulation with combination



CAR-M + Anti-PD1: Robust Synergy

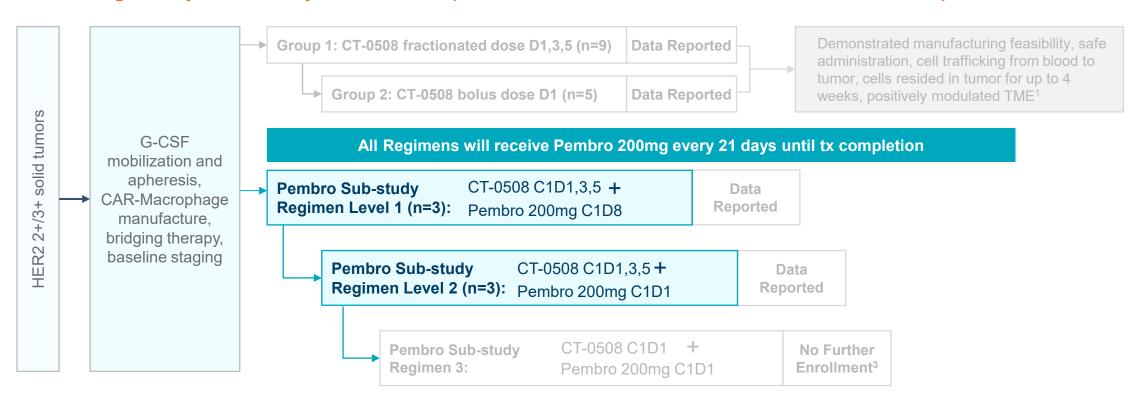

Synergy in a solid tumor model that is resistant to both CAR-Macrophage and anti-PD1 monotherapy

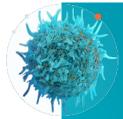
I.V. CAR-M¹ + anti-PD1 leads to synergistic tumor control



Syngeneic CT26-HER2 solid tumor model. Resistant to anti-PD1 monotherapy.

I.V. CAR-M¹ + anti-PD1 leads to 100% survival


Targeting HER2: CT-0508 + anti-PD1



CT-0508 Study 101: CT-0508 + Pembrolizumab Sub-study

Assessing safety, tolerability and TME impact of CT-0508 in combination with anti-PD1 pembrolizumab

PRIMARY OUTCOMES²

Safety and tolerability

SECONDARY OUTCOMES & ADDITIONAL ANALYSES²

- ORR (RECIST 1.1)
- Trafficking
- PFS
 TME activation

- T cell recruitment/activation
- T cell expansion/clonality

CT-0508+Pembrolizumab Combination: Demographics¹

Patient Demographics were consistent with patients enrolled in the monotherapy groups

Summary of Participant and Tumor Characteristics				
Characteristic	N = 6	Characteristic	N = 6	
Median age (range), years	58 (45, 73)	Tumor Type, n (%)		
Gender, n (%) Male Female	2 (33.3) 4 (66.7)	Breast Cancer Esophageal Cancer Ovarian Cancer Colorectal Cancer	3 (50.0) 1 (16.7) 1 (16.7) 1 (16.7)	
Race, n (%) White 6 (1)		Median Number of Prior Cancer Therapies, n (range)	6 (3, 10)	
ECOG PS, n (%) 0 1	1 (16.7) 5 (83.3)	Median Number of Prior Anti-HER2 Therapies, n (range) Subjects with Prior Anti-HER2 Therapy	5 (0, 7) 4 (66.7)	
HER2 Overexpression, n (%) IHC 3+ IHC 2+/FISH+	5 (83.3) 1 (16.7)	Prior Radiotherapy, n (%) Yes	5 (83.3)	
Microsatellite Instability (MSI)* MSS/MSI-Low MSI-High	6 (100.0) 0 (0)	Tumor Mutational Burden (TMB)* Low (<10 mut/Mb) High (≥10 mut/Mb)	5 (83.3) 1 (16.7) [†]	

CT-0508+Pembrolizumab Combination: Well-Tolerated, No Dose Limiting Toxicities

Similar safety profile to CT-0508 monotherapy

	CT-0508 Monotherapy Group 1: Fractionated Dosing	CT-0508 Monotherapy Group 2: Bolus Dosing	CT-0508 + Pembrolizumab Regimen 1	CT-0508 + Pembrolizumab Regimen 2
Patients Treated	N=9 (%)	N=5 (%)	N=3 (%) ¹	N=3 (%)
Any treatment-emergent AEs (TEAE)	9 (100)	5 (100)	3 (100)	3 (100)
Grade 1-2	4 (44)	2 (40)	1 (33)	2 (66)
Grade 3-4	5 (56)	3 (60)	2 (66)	1 (33)
Any TEAEs related to CT-0508	8 (89)	4 (80)	3 (100)	3 (100)
Any TEAEs related to pembrolizumab	N/A	N/A	1 (33)	2 (66)
Any treatment-emergent SAEs (TESAE)	4 (44)	3 (60)	3 (100)	1 (33)
Any TESAEs related to CT-0508 ²	2 (22)	2 (40)	3 (100)	1 (33)
Any TESAEs related to pembrolizumab	N/A	N/A	0 (0)	0 (0)
Cytokine release syndrome (CRS)	6 (67)	3 (60)	2 (67)	3 (100)
Grade 1-2	6 (67)	3 (60)	2 (67)	3 (100)
Grade 3-4	0 (0)	0 (0)	0 (0)	0 (0)
ICANS	0 (0)	0 (0)	0 (0)	0 (0)

Similar safety profile between CT-0508 as monotherapy & in combination with pembrolizumab

No severe CRS or ICANS

CT-0508+Pembro Combination: Regimen Level 1 and 2 Summary

Patient	Regimen Level	Best Overall Response	Disease	HER2 Status	Additional Treatment Details
Patient 1	RL1	PD	Stage IV Breast Cancer	HER2 2+	Treated with dexamethasone due to G2 CRS post CT-0508 infusion, prior to pembrolizumab administration
Patient 2	RL1	PD	Stage IV Ovarian Cancer	HER2 3+	 Treated with methylpredinosolone due to G3 Infusion reaction post CT-0508 infusion, prior to pembrolizumab administration Triple HLA Class I loss of heterozygosity (HLA-A, B and C deletion in tumor genome).
Patient 3	RL1	SD (One out of two target lesions reduced by ~46%)	Stage IV Esophageal Cancer	HER2 3+	 Missed an early cycle (2nd infusion) of pembrolizumab due to medical issues unrelated to therapy Patient had brain metastasis and progressed per RECIST 1.1 week 14 due to new brain met
Patient 4	RL2	PD	Stage IV Breast Cancer	HER2 3+	Total 2 Pembro doses administered
Patient 5	RL2	PD	Stage IV Breast Cancer	HER2 3+	Total 2 Pembro doses administered
Patient 6	RL2	PD	Stage IV Colorectal Cancer	HER2 3+	 Missed 2nd cycle of pembrolizumab - Total 1 Pembro doses administered Triple HLA Class I loss of heterozygosity (HLA-A, B and C deletion in tumor genome).

Patient 3: EAC patient with 6 prior lines of therapy and refractory to Enhertu

Cancer type: Stage IV Esophageal adenocarcinoma (EAC), HER2 3+

Prior history: 6 Prior lines of therapy; Most recent prior line: achieved BOR* of PD and discontinued in 2 months on Enhertu

Pembrolizumab clinical studies in EAC:

- EAC is often refractory to pembrolizumab monotherapy
- Pembrolizumab monotherapy in EAC: ORR 5%, PFS 1.5 months (KEYNOTE 180)
- Pembrolizumab did not show a survival benefit over SOC chemotherapy in PDL1+ EAC (KEYNOTE 181)

Patient 3 - Prior Line	Prior Therapy	Start Time	End Time	Best Overall Response
1	Neoadjuvant carboplatin/paclitaxel	Feb 2019	April 2019	CR
2	Adjuvant Capacitabine, oxaliplatin, trastuzumab	Nov 2020	Nov 2020	Unknown
3	Fluorouracil, folinic acid, oxaliplatin, trastuzumab	Dec 2020	April 2021	PR
4	Fluorouracil, trastuzumab	May 2021	March 2022	SD
5	Paclitaxel, ramucirumab, trastuzumab, tucatinib	May 2022	Jan 2023	SD
6	Enhertu	Feb 2023	April 2023	PD

Patient 3: 46% reduction in 1 of 2 target lesions

Paratracheal LN Target Lesion: 46% reduction by week 13

Dosing

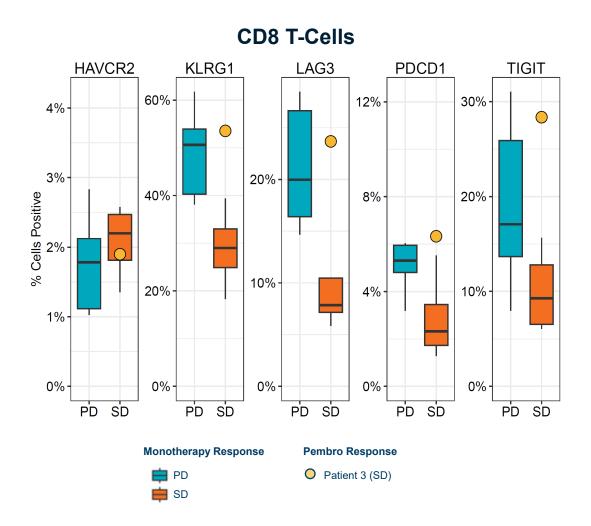
- Patient received 3.10E+09 cells
- Patient missed the 2nd cycle of pembrolizumab

Tumor assessments

- Paratracheal target lesion reduction of 46% by week 13; 21.9mm to 11.8mm
- Mediastinal mass target lesion grew 31% by week 13; 26.9 to 35.3mm

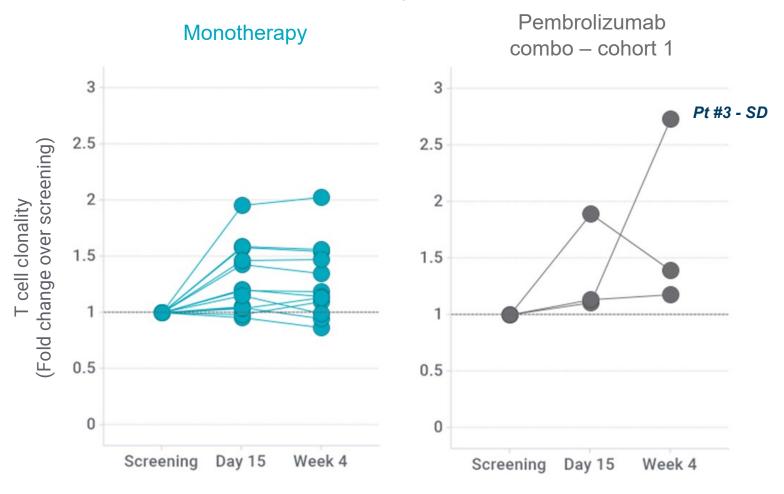
Clinical assessments

- Achieved a BOR of SD per RECIST 1.1
- PD per RECIST at week 13 due to new CNS metastasis
- PFS of 3.25 months (13.3 weeks)

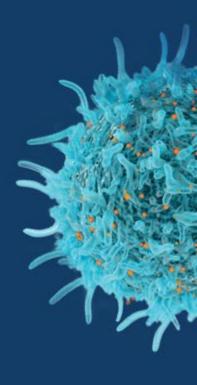


Outcome Comparators	PFS
Patient 3 – Regimen 1 CT-0508 / Pembro	3.25 months
Patient 3 – 6 th Line of Therapy on Enhertu	2.0 months
Pembrolizumab monotherapy in KEYNOTE 180*	1.5 months

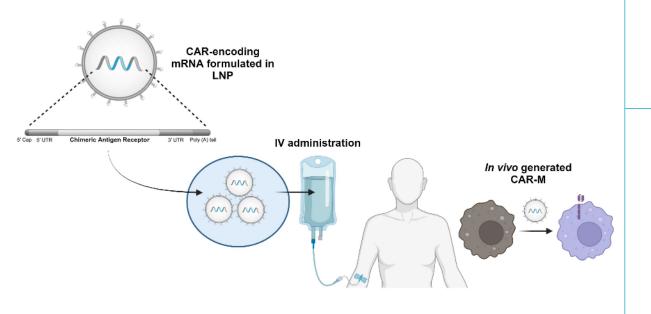
Patient 3's paratracheal target lesion reduction of 46% was the largest reduction of tumor in any patient treated with CT-0508

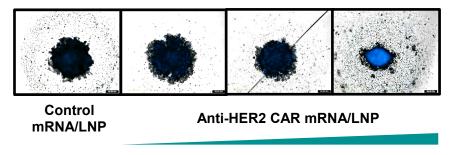

Patient 3: High baseline peripheral CD8 T cell exhaustion and achieved BOR of SD

Patient 3 achieved BOR of SD despite high baseline peripheral CD8 T cell exhaustion

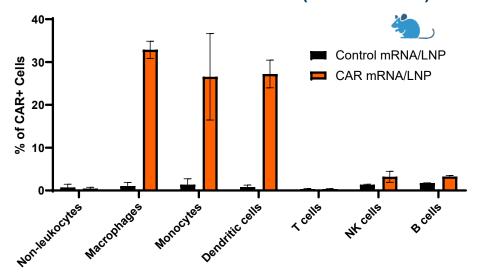

Patient 3: Greatest increase in peripheral blood T cell clonality seen to-date across all 17 patients treated with CT-0508

Increased T cell clonality in the peripheral blood


In Vivo Oncology

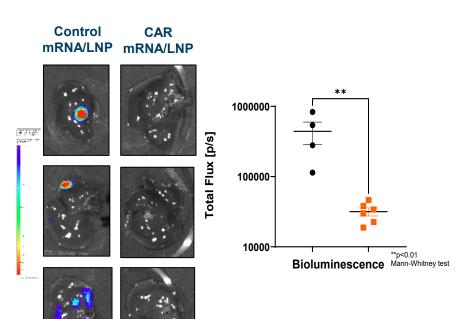


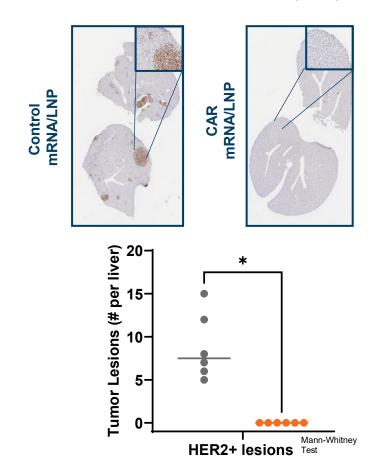
Directly Reprogramming Myeloid Cells In Vivo with mRNA/LNP


Redirecting endogenous myeloid cells with mRNA for cancer immunotherapy

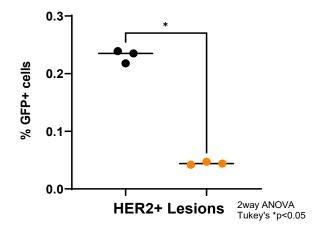
Direct TAM reprogramming shrinks tumors*

CAR Distribution in vivo (Mouse Blood)




In Vivo CAR-M Suppresses Liver and Lung Metastasis

Systemic LNP administration in humanized model leads to robust disease control


Tumor Lesions in Liver (BLI)

Tumor Lesions/Liver (IHC)

Tumor Lesions in Lung (IHC)

- CAR mRNA/LNP
- Control mRNA/LNP

